EAS 3603 - Thermodynamics of Earth Systems

Instructors:
Dr. Athanasios Nenes (nenes@eas.gatech.edu, ES&T 3258, 4-9225)

Teaching Assistants:
Jodon Beckler (gtg639b@mail.gatech.edu, ES&T)

Website:
http://nenes.eas.gatech.edu/EAS3603

Class material usage:
The instructor and students in this class, as members of the Georgia Tech community, are bound by the Georgia Tech Academic Honor Code. The instructor will make available copies of previous examinations and/or other appropriate assignments, samples, and readings. Unauthorized use of any previous semester course materials, such as tests, quizzes, homework, projects, and any other coursework, is prohibited in this course. Using these materials will be considered a direct violation of academic policy and will be dealt with according to the GT Academic Honor Code. Students will be asked to acknowledge their acceptance of this stipulation and their willingness to abide by all terms of the Academic Honor Code by signing a copy of the "Honor Agreement" attached to all quizzes and exams. The complete text of the Academic Honor Code may be found at http://www.deanofstudents.gatech.edu/integrity/policies/honor_code.html

PART 1: INTRODUCTION
Introduction
- What is thermodynamics? Why study thermodynamics of the Earth system?
- Thermodynamic systems: composition and state; system vs the environment; open or closed or isolated; boundaries of a system and the environment,
- Thermodynamic state of a system: state variables (intensive and extensive); thermodynamic properties; equation of state
- State variables: pressure, temperature, volume/density; units

Composition and structure of components of the earth system
- Composition: atmosphere, ocean, solid earth
- Pressure: units; vertical variations in the atmosphere, ocean, solid earth; space/time variability
- Density (specific volume): units; vertical variations in the atmosphere, ocean, solid earth
- Temperature: units; vertical variations in the atmosphere, ocean, and solid earth; space/time variability
- Hydrostatic equation: application to ocean and hypothetical constant density atmosphere; solid earth
Equation of state
- Ideal gas law
- Kinetic-molecular model of the ideal gas
- Equation of state for air: Dalton’s law of partial pressures; virtual temperature
- Hypsometric equation (atmosphere)
- Equation of state for real gases, liquids, and solids
- Equation of state for seawater

PART 2: FRAMEWORK

First Law of thermodynamics
- Basic concepts
- Mathematical review: differentials and derivatives, exact differentials
- Work; expansion work
- Heat: heat capacity, basics of heat transfer mechanisms
- First law of thermodynamics: internal energy, enthalpy, specific heats, heat capacity.
- Applications of first law to ideal gases: Poisson’s relations

Entropy and the 2nd law
- Entropy: reversible and irreversible processes; Clausius inequality; Boltzmann-Gibbs statistical picture of entropy
- 2nd Law of thermodynamics
- First and second laws combined: Legendre transformations: Gibbs and Helmholtz functions; thermodynamic equilibrium
- Thermodynamic relations: Maxwell relations; relations involving specific heats
- Adiabatic processes in the dry atmosphere, ocean, and mantle and core
- Static stability
- Entropy and diffusive processes (heat conduction, viscosity, etc)
- Entropy, heat, and the 3rd law

Phase Equilibria
- Gibbs phase rule: thermodynamic degrees of freedom, phases and components
- Energy in phase changes and chemical reactions
- Phase equilibria: chemical potential and multicomponent systems (Gibbs-Duhem); latent heat; Clapeyron equation (first latent heat law) and Kirchhoff’s equation (second latent heat law)
- Application to water (single component system): phase diagram; Clausius-Clapeyron equation;
- Binary phase diagrams (water solution): simple eutectics, lever rule
- Crystallization in binary systems: equilibrium crystallization, fractional crystallization, melting
PART 3: APPLICATIONS

Moist thermodynamic processes in the atmosphere
- Humidity variables
- Isobaric cooling: dew point and frost point; radiation fog
- Cooling and moistening by evaporation of water: wetbulb temperature; prefrontal rain fog
- Saturation by adiabatic, isobaric mixing: steam fog and jet contrails
- Saturated adiabatic cooling: equivalent potential temperature; saturated adiabatic lapse rate, adiabatic liquid water content; convective cloud formation
- Aerological diagrams

Physical chemistry of water solutions – solution thermodynamics
- Fugacity and activity
- Ideal solutions
- Colligative properties
- (Real solutions: variation of activities)
- Aerosols (deliquescence-efflorescence; surface energy-Kelvin effect; applications using ISORROPIA)

Petrology
- geothermometry and geobarometry
- melting beneath mid-ocean ridges and composition of oceanic crust
- magmatic fractionation and layered intrusions