Surfactants from the gas phase may enhance aerosol cloud nucleation

N. Sareen,1,† A. N. Schwier,1 T. L. Lathem,2 A. Nenes,2,3,* and V. F. McNeil1,†

1. Department of Chemical Engineering, Columbia University, New York, NY 10027 2. School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA 30332 3. School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332 †: Present address: Department of Environmental Sciences, Rutgers University, New Brunswick, NJ 08901

Clouds, a key component of the climate system, form when water vapor condenses upon atmospheric particulates termed Cloud Condensation Nuclei (CCN). Variations in CCN concentrations can profoundly impact cloud properties, with important effects on local and global climate. Organic matter (OM) constitutes a significant fraction of tropospheric aerosol mass, and can influence CCN activity by depressing surface tension, contributing solute, and influencing droplet activation kinetics by forming a barrier to water uptake. We present direct evidence that two ubiquitous atmospheric trace gases, methlyglyoxal and acetaldehyde, known to be surface-active, can enhance aerosol CCN activity upon uptake. This effect is demonstrated by exposing acidified ammonium sulfate particles to 250 ppb or 8 ppb of gas-phase methylglyoxal and/or acetaldehyde in an aerosol reaction chamber for up to 5 h. For the more atmospherically relevant experiments, i.e., the 8 ppb organic precursor concentrations, significant enhancements in CCN activity, up to 7.5% reduction in critical dry diameter for activation, are observed over a timescale of hours, without any detectable limit in activation kinetics. This reduction in critical diameter enhances the apparent particle hygroscopicity up to 26%, which for ambient aerosol would lead to cloud droplet number concentration increases of 8-10% on average. The observed enhancements exceed what would be expected based on Köhler theory and bulk properties. Therefore, the effect may be attributed to the adsorption of methlyglyoxal and acetaldehyde to the gas-aerosol interface, leading to surface tension depression of the aerosol. We conclude that gas-phase surfactants may enhance CCN activity in the atmosphere.

atmospheric chemistry | climate | clouds

Introduction

The reactive uptake of volatile organic compounds (VOCs) by wet aerosols is a potentially important source of OM (1-3). The α-dicarbonyl species glyoxal and methlyglyoxal, along with acetaldehyde and other carbonyl-containing species, belong to this class; they are absorbed by wet aerosol particles (or cloud droplets) and undergo aqueous phase reactions to form low-volatility secondary organic aerosol (SOA) (2, 4-6). The impacts of these processes on aerosol CCN activity and cloud droplet formation are unknown at this time. Few studies have focused on the impact of SOA generated in the aqueous phase on aerosol CCN activity (7-9). It was recently shown that the formation of SOA via the condensation of low-volatility VOC oxidation products, which are generally less hygroscopic than deliquescent inorganic salts, can affect the CCN activity of the seed aerosol (10-15). SOA generated through aqueous-phase chemistry is likely to be highly oxygenated and surface-active, hence making it strongly CCN active (6, 16, 17). Some of the VOC precursors themselves, including methlyglyoxal and acetaldehyde, are also surface-active (6, 16, 17).

We studied the changes in the CCN activity of acidified ammonium sulfate seed aerosols upon exposure to gas-phase methylglyoxal or acetaldehyde. Both these organics are surface-active molecules and they also form surface-active material in aerosol bulk (6, 16, 17). A continuous flow streamwise thermal gradient CCN chamber (CFSTGC) was used downstream of a 3.5 m² Teflon reaction chamber or an aerosol flow tube in order to determine the cloud-forming potential of these aerosols after various exposure times. The critical dry diameters observed for each experiment as a function of instrument supersaturation are compared to the pure, non-acidified (NH₄)₂SO₄ control in order to demonstrate the effect of the organics. A decrease in critical activation diameter at a given critical supersaturation indicates enhancement in CCN activity, and vice versa. We find that, on the timescale of hours, methlyglyoxal and/or acetaldehyde exposure enhances CCN activation beyond what is expected from Köhler theory predictions based on bulk properties. We attribute this enhancement to the surface adsorption of these VOCs from the gas-phase to the aerosol interface. To our knowledge, this is the first direct experimental evidence that the uptake of relatively insoluble, volatile organic gases by atmospheric aerosol particles may lead to an enhancement in cloud droplet formation and points to an unaccounted-for mechanism for augmenting CCN activity. This study introduces the idea that volatile organics in the atmosphere may act as a reservoir of surfactants that can be taken up by aerosol particles and augment their CCN activity.

Results and Discussion

Figure 1 summarizes the results of the CCN activation experiments showing the change in critical activation diameters as compared to pure (NH₄)₂SO₄ for the various conditions tested. (Figure S1 in the Supporting Information contains the supersaturation vs. activation diameter plots for each individual condition). After 3 minutes of exposure to 250 ppb methlyglyoxal in the flow tube experiments (particle concentration 1.5±0.3×10⁴ cm⁻³), there is a negligible change in aerosol CCN activity. However, when aerosols (9.7±0.3×10⁴ cm⁻³) are exposed to methlyglyoxal for longer periods in the chamber (3-5 h), their CCN activity is enhanced considerably. For the conditions considered, methylglyoxal shows comparable effects to acetaldehyde when aerosols are exposed to 250 ppb of methlyglyoxal at an exposure time of 5 h. Acetaldehyde enhances aerosol activity significantly more than methylglyoxal as shown by the shifts in critical activation diameters observed in our experiments (Figure 2).

Reserved for Publication Footnotes
Experiment Average κ

(NH$_4$)$_2$SO$_4$ 0.60±0.18
5 hr 250 ppb MG 0.81±0.24
3 hr 250 ppb MG 0.74±0.22
3 min 250 ppb MG 0.63±0.18
5 hr 8 ppb MG 0.55±0.16
3 min 8 ppb MG 0.59±0.18
5 hr 250 ppb AC 0.81±0.24
5 hr 8 ppb AC 0.72±0.22
5 hr 8 ppb AC, 8 ppb MG 0.71±0.19

CCN activity even more than methyglyoxal, reducing the critical activation diameters on average by 9.68±0.04%.

Methylglyoxal and acetaldehyde have been observed in both marine and continental environments (18-23). The gas-phase methylglyoxal, acetaldehyde, and particle concentrations used in the experiments described above exceed typical atmospheric concentrations (urban: 104 cm$^{-3}$, 2.5 ppb methylglyoxal, 4 ppb acetaldehyde (24, 25); wet-season Amazon: 102 cm$^{-3}$, 0.125 ppb methylglyoxal (18, 26), 0.5 ppb acetaldehyde (27)). Chamber experiments conducted at lower acetaldehyde and particle concentrations (2.58x102 cm$^{-3}$, 8 ppb acetaldehyde) with a 5 h residence time showed a depression in critical activation diameters by 6.01±0.02% at the supersaturations studied (Figure 1). However, experiments conducted at low methylglyoxal and particle concentrations (1.78x102 cm$^{-3}$, 8 ppb methylglyoxal) showed CCN activity approaching that of ammonium sulfate.

Table 1 lists the average apparent hygroscopicity parameter, κ (calculated from the CCN activity data following Petters and Kreidenweis (28) and following the convention that σ=σ$_{water}$) for each experiment. (Figure S2 in the Supporting Information shows the change in κ as compared to (NH$_4$)$_2$SO$_4$). For the 3 min methylglyoxal flow tube experiments, the κ values (0.63±0.18) are consistent with pure (NH$_4$)$_2$SO$_4$. Particles exposed for longer time scales, however, show an increase in κ (beyond that of pure (NH$_4$)$_2$SO$_4$) with increasing supersaturation. Exposure to 250 ppb methylglyoxal in the chamber increases the apparent hygroscopicity from ~0.6 to ~1.0. Particles exposed to 250 ppb acetaldehyde become substantially more hygroscopic than pure ammonium sulfate, with κ values ranging from 0.62 to 1.00 (the highest observed κ value for the 8 ppb exposure experiments was 0.88).
Such shifts in hygroscopicity could lead to important enhancements in cloud droplet number concentrations (CDNC). Simulations using the GEOS-CHEM and NASA-GMI models coupled with the cloud droplet adjoint framework of Karydis et al. (29) were conducted in order to understand the stratus cloud CDNC response to a hypothetical 20% increase in hygroscopicity (reflecting what was observed in the 5ppb acetaldehyde exposure experiments). Figure 2 shows that these global models predict that CDNC increases on average by 10%, and by as much as 20% over continental regions. Given that marine stratocumulus clouds are strong climate forcers and are sensitive to CCN concentration changes, a 10% increase in CDNC would be important. To the extent that liquid water is not affected, such a CDNC perturbation could lead to roughly a 4% decrease in cloud droplet effective radius. This could change shortwave cloud albedo by up to 0.7% (30), which if globally relevant would exert a ~0.5 W m$^{-2}$ radiative cooling. Although not all stratus are expected to be affected and manifest this cooling, this simple calculation illustrates the potential impact of this phenomenon on calculations of shortwave cloud forcing.

Given that organics generally exhibit more than twofold lower κ than (NH$_4$)$_2$SO$_4$ (28), the aerosol surface tension must be lower than that of pure water to explain the increase in κ that we observe (31). κ was observed to increase at higher supersaturations. As another way of expressing this, the observed critical supersaturation in our experiments (S_c) deviates somewhat from the power law dependence on dry diameter (d_0) predicted by simple Köhler theory ($S_c \sim d_0^{-\frac{1}{3}}$); power law exponents range from -1.28 for the 5 h experiments to -1.51 for 3 min exposures (Supporting Information, Table S1). This is indicative of surfactants being present, as particles activating at higher supersaturations (i.e., smaller particles) tend to be more concentrated in surfactants at the critical wet diameter, resulting in a greater surface tension reduction than in particles which activate at lower supersaturations.

This is applicable when surface-bulk partitioning of organics does not fully compensate for surface tension depression (32), and if surfactants are in equilibrium with the bulk and gas phase.

Köhler Theory Analysis (KTA) (33) was used to infer the extent of surface tension depression (with respect to water) in the particles. The relative abundance of the organic and inorganic components was obtained from water-soluble organic carbon (WSOC) analysis and ion chromatography (IC) of aqueous extracts of filter samples (by pumping down the chamber for approximately 14 h following an exposure experiment with 250 ppb of methylglyoxal and 5 h residence time). KTA suggests that methylglyoxal and its reaction products suppress the surface tension of the aerosols to 65.1±0.8 dyn cm$^{-1}$ compared to 72.55 dyn cm$^{-1}$ for water. Methylglyoxal and acetaldehyde have low effective Henry’s Law constants compared to that of glyoxal (34). In accord with the observations of Kroll et al. (2005) (3), we observed negligible particle growth when inorganic seed particles with a diameter of 150 nm were size-selected using a differential mobility analyzer (DMA, TSI) and exposed to methylglyoxal in the chamber (Supporting Information, Figure S3). This suggests that the surface-active organic species in this study reside at the gas-aerosol interface and induce the significant effects on CCN activity observed mainly by altering the properties of the particle surface. This is consistent with observation by Jayne et al. that acetaldehyde uptake by liquid water droplets on short timescales is pH-dependent and exceeds predictions based on bulk-phase parameters (35). This is the first time that the presence of relatively insoluble VOCs has been shown to enhance aerosol CCN activity.

If the total uptake of methylglyoxal to the particles is described by Henry’s Law, then based on an effective Henry’s Law constant of $H = 3.2 \times 10^9$ M atm$^{-1}$ (34), and experimental surface tension data for aqueous bulk methylglyoxal solutions (16) (which is an upper limit in surface tension change given that bulk-surface repartitioning will mitigate some of the surfactant impacts on κ) the surface tension of the particles exposed to 250 ppb of methylglyoxal at the moment of activation is predicted to be 72.02 dyn cm$^{-1}$. This leads to a very small predicted change in κ (2.2% increase relative to pure ammonium sulfate). A similar calculation for acetaldehyde, which has a Henry’s Law constant two orders of magnitude lower than that of methylglyoxal (34), predicts an insignificant change in κ (0.01% increase). If surface-bulk repartitioning of the solute had been dominant, it would have depressed hygroscopicity further when compared to the pure inorganic. Romakkaniet al. (2011) modeled a similar system, specifically the reactive uptake of gas-phase methylglyoxal to (NH$_4$)$_2$SO$_4$ aerosol, allowing aqeous-phase OH oxidation to take place (36). They predicted that total reactive uptake of surface-active species into the aqueous phase may be enhanced by surface-bulk partitioning, especially for small particles, beyond what would be predicted based on Henry’s Law alone. The significant differences between the model system of Romakkaniet al. and our study are that 1) the additional driving force for uptake of the aerosol-phase OH reaction with the organics is absent in our experiments and 2) they assume equilibrium between the gas, surface, and bulk. The fact that we observe a much greater enhancement in κ than predicted solely based on Henry’s Law, and that no chemical change in the bulk or surface composition will induce a Raoult effect that increases κ beyond that of pure (NH$_4$)$_2$SO$_4$, suggests that surface adsorption plays a significant role in determining the aerosol surface tension and thus CCN activity (1, 37).

To confirm that changes in bulk hygroscopicity cannot explain the κ enhancements seen in the chamber data, we analyze the CCN activity of atomized aqueous filter extracts to quantify hygroscopicity of the bulk material in the aerosol. By comparing this hygroscopicity to that of the chamber aerosol, we can deduce changes related to surface processes and non-equilibrium phenomena occurring in the chamber. Aerosolized filter extracts show similar CCN activity to that of pure (NH$_4$)$_2$SO$_4$, but much less than that of particles exposed to methylglyoxal in the aerosol chamber for 3.5 h (Supporting Information, Figure S4). Similar results to the filter extracts were observed for aerosols formed by atomizing bulk aqueous solutions of 3.1 M (NH$_4$)$_2$SO$_4$ and 0.5 M methylglyoxal 24 h after mixing (previously shown to exhibit significant surface tension depression) (16). Aerosols formed from atomized solutions of 0.5 M methylglyoxal and/or 0.5 M acetaldehyde and Millipore water exhibit decreased CCN activity compared to pure (NH$_4$)$_2$SO$_4$, typical of pure organic aerosols (κ=0.12±0.04) and drastically different from the observed chamber aerosol hygroscopicity (Supporting Information, Figure S5). This supports the notion the surface adsorption of methylglyoxal and acetaldehyde (not present in the atomized solution experiments) is key to the CCN enhancement seen in the particles sampled directly from the chamber, as the hygroscopicity of aerosol generated from bulk solutions never exceeds that of the pure salt.

Comparing our results for the flow tube and chamber exposure studies suggests that a timescale of 3 min < t < 3 h is required for surface modification and the concomitant enhancement in CCN activity. This could suggest a slow approach to adsorption equilibrium, or that formation of oligomers in the near-surface region is required. Hydration of methylglyoxal in the aqueous phase occurs on a timescale of ~1 s (38). The timescale of methylglyoxal self-oligomerization reactions is on the order of hours (16) in saturated ammonium sulfate solutions (full details of the timescale analysis are given in the Supporting Information). Recent studies of acetaldehyde and methylglyoxal mixtures in bulk ammonium sulfate solutions showed that cross-reactions between the two organics lead to greater surface tension...
depression than predicted based on the single-species isotherms (6). To represent a more atmospherically relevant environment, the combined effect of these aldehydes was also studied in the chamber; 2.3×10³ cm⁻² of acidified ammonium sulfate were exposed to 8 ppb each of methylglyoxal and acetaldehyde for 5 h. These experiments showed similar CCN enhancement to the low concentration acetaldehyde experiments. Unlike the bulk experiments of Li et al. (2011), no synergistic effect due to the mixed organics was observed. This suggests that the mechanism of surface tension depression is different in the bulk system vs. the aerosols, and that the formation of oligomer cross products may be more important to surface tension depression in the bulk system.

The possibility of phase separation when the particles enter the dryer/CFSTGC setup can be ruled out based on a number of factors: the aerosol was acidified, preventing complete drying, thereby, preserving the gas-liquid interface. Additionally, particle growth in the dry distribution was not observed hence the amount of organic material is small and this reduces the chances for a phase separation. The state behavior of the particles at higher and lower relative humidities is also predictable, suggesting that two-phase separation is unlikely (Supporting Information).

The wet diameter plots of methylglyoxal droplets formed by the particles exposed to methylglyoxal and acetaldehyde at all time scales studied are similar to that of pure (NH₄)₂SO₄. These observations rule out the possibility of a kinetic barrier to water uptake to these particles on the timescale of the CCN measurements (39). However, the barrier action of a surfactant film towards the uptake of gas-phase species to the particle depends on the identity of the penetrating gas-phase molecules. Hence, a barrier effect for the uptake of trace gases (with implications for aerosol heterogeneous chemistry) is a question for future study.

Conclusions

We report here the results of chamber experiments conducted to study how the uptake of two VOCs in the atmosphere, methylglyoxal and acetaldehyde, on acidified (NH₄)₂SO₄ seed aerosols can affect their CCN activity. At 250 ppb, both organics individually enhanced CCN activity. At more atmospherically relevant concentrations of 8 ppb, acetaldehyde depressed the critical activation diameters, whereas no change was seen with methylglyoxal. A mixture of the two organics at lower concentrations showed comparable augmentation in CCN activity to 8 ppb acetaldehyde alone. These enhancements are beyond what are expected due to Henry's Law alone and can be attributed to surface adsorption and non-equilibrium partitioning between the gas and aerosol phases. Based on the maximum enhancements seen in our experiments, a similar surfactant effect occurring in the atmosphere may increase calculated average cloud droplet number concentrations by 8-10%, thus affecting predictions of shortwave cloud albedo. This is the first experimental study where such an effect has been demonstrated and it is likely that a similar effect may also be observed in ambient aerosols in the presence of a mixture of surface-active VOCs. It is interesting to note that droplet closure studies in polluted ambient clouds (e.g., Conant et al., 2003; Fountoukis et al., 2007; Meskhidze et al., 2004) (40-42) do not account for surfactant adsorption effects but require an assumption of water uptake coefficient, \(\gamma \), that is considerably lower (\(\gamma = 0.03 - 0.06 \)) than theoretical expectations or in-situ CCN activation experiments (\(\gamma = 0.2 - 1.0 \)) (43-49). This discrepancy in uptake coefficient elevates CDNC in ambient clouds by up to 20% (41), consistent with the magnitude of the surfactant effects observed in our study. Therefore, although surfactant adsorption effects on droplet number have not been identified in ambient aerosol to date, the aforementioned discrepancy in water uptake coefficient may be a direct consequence of it. To demonstrate that the observed effects occur in the atmosphere, future field studies in regions with high VOC concentrations should be conducted by exposing (NH₄)₂SO₄ seed aerosols to ambient air in an aerosol chamber and using similar CCN and filter analyses to those done in the laboratory chamber experiments. Alternatively, particles under stable equilibrium with supersaturated water vapor can be suspended using an electrodynamic balance (50), and then exposed to the organic gas-phase precursors to examine whether nucleation is induced in accord with our measurements. Finally, exposing particles from the chamber experiments carried out here to ultra-high RH can deconvolute the contribution of bulk solute and surface tension depression to the observed hygroscopicity. (51) Future work using these methods will help determine whether these mechanisms occur in the atmosphere.

Methods

A schematic of the experimental setup is shown in Figure 3. A 0.2 M (NH₄)₂SO₄ solution was prepared using Millipore water and the pH was adjusted to 0.1 or 2.10 using H₂SO₄, as the reactions which drive uptake are thought to be promoted by an acidic environment (16). The solution was aerosolized with pure N₂ using a constant output atomizer (TSI). This wet aerosol stream was exposed to either gas-phase methylglyoxal (250 ppb or 8 ppb) and/or acetaldehyde (250 ppb or 8 ppb) in a continuous-flow 3.5 m² Teflon aerosol chamber. The organic trace gas and acidified (NH₄)₂SO₄ particles were introduced into the chamber through cold fingers in an aerosol flow consisting of dry N₂ at a flow rate of 10 l/min and a flow temperature of 20°C upstream of the SMPS/CFSTGC. To characterize the time evolution of these processes, a residence time of 3 h was also tested using the chamber, and a glass flow tube (7.5 cm ID, 55 cm length) was used for a 3 min exposure time. Relative humidity inside the reactors was maintained between 62-67% as measured with a relative humidity meter (Vaisala) by passing the N₂ stream to these particles on the timescale of the CCN measurements. The possibility of phase separation when the particles enter the dryer/CFSTGC setup can be ruled out based on a number of factors: the aerosol was acidified, preventing complete drying, thereby, preserving the gas-liquid interface. Additionally, particle growth in the dry distribution was not observed hence the amount of organic material is small and this reduces the chances for a phase separation. The state behavior of the particles at higher and lower relative humidities is also predictable, suggesting that two-phase separation is unlikely (Supporting Information).

The wet diameter plots of methylglyoxal droplets formed by the particles exposed to methylglyoxal and acetaldehyde at all time scales studied are similar to that of pure (NH₄)₂SO₄. These observations rule out the possibility of a kinetic barrier to water uptake to these particles on the timescale of the CCN measurements (39). However, the barrier action of a surfactant film towards the uptake of gas-phase species to the particle depends on the identity of the penetrating gas-phase molecules. Hence, a barrier effect for the uptake of trace gases (with implications for aerosol heterogeneous chemistry) is a question for future study.

We report here the results of chamber experiments conducted to study how the uptake of two VOCs in the atmosphere, methylglyoxal and acetaldehyde, on acidified (NH₄)₂SO₄ seed aerosols can affect their CCN activity. At 250 ppb, both organics individually enhanced CCN activity. At more atmospherically relevant concentrations of 8 ppb, acetaldehyde depressed the critical activation diameters, whereas no change was seen with methylglyoxal. A mixture of the two organics at lower concentrations showed comparable augmentation in CCN activity to 8 ppb acetaldehyde alone. These enhancements are beyond what are expected due to Henry's Law alone and can be attributed to surface adsorption and non-equilibrium partitioning between the gas and aerosol phases. Based on the maximum enhancements seen in our experiments, a similar surfactant effect occurring in the atmosphere may increase calculated average cloud droplet number concentrations by 8-10%, thus affecting predictions of shortwave cloud albedo. This is the first experimental study where such an effect has been demonstrated and it is likely that a similar effect may also be observed in ambient aerosols in the presence of a mixture of surface-active VOCs. It is interesting to note that droplet closure studies in polluted ambient clouds (e.g., Conant et al., 2003; Fountoukis et al., 2007; Meskhidze et al., 2004) (40-42) do not account for surfactant adsorption effects but require an assumption of water uptake coefficient, \(\gamma \), that is considerably lower (\(\gamma = 0.03 - 0.06 \)) than theoretical expectations or in-situ CCN activation experiments (\(\gamma = 0.2 - 1.0 \)) (43-49). This discrepancy in uptake coefficient elevates CDNC in ambient clouds by up to 20% (41), consistent with the magnitude of the surfactant effects observed in our study. Therefore, although surfactant adsorption effects on droplet number have not been identified in ambient aerosol to date, the aforementioned discrepancy in water uptake coefficient may be a direct consequence of it. To demonstrate that the observed effects occur in the atmosphere, future field studies in regions with high VOC concentrations should be conducted by exposing (NH₄)₂SO₄ seed aerosols to ambient air in an aerosol chamber and using similar CCN and filter analyses to those done in the laboratory chamber experiments. Alternatively, particles under stable equilibrium with supersaturated water vapor can be suspended using an electrodynamic balance (50), and then exposed to the organic gas-phase precursors to examine whether nucleation is induced in accord with our measurements. Finally, exposing particles from the chamber experiments carried out here to ultra-high RH can deconvolute the contribution of bulk solute and surface tension depression to the observed hygroscopicity. (51) Future work using these methods will help determine whether these mechanisms occur in the atmosphere.
environment and then passing a 1.4 cm \(N_2 \) stream over it while the cold finger was kept at -78 °C for a final concentration of 250 ppb or passing a 0.3 cm \(N_2 \) stream over it while the cold finger was kept at -92 °C for a final concentration of 8 ppb.

Acknowledgements.

SUPPORTING INFORMATION
Gas-phase surfactants enhance aerosol cloud nucleation

N. Sareen,† A. N. Schwier,† T. Lathem, A. Nenes, and V. F. McNeill

1. Department of Chemical Engineering, Columbia University, New York, NY 10027
2. School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA 30332
3. School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332
†: Present address: Department of Environmental Sciences, Rutgers University, New Brunswick, NJ 08901
* email: vfm2103@columbia.edu, athanasios.nenes@gatech.edu

Cloud droplet number (CDN) calculations

Computation of droplet number, \(N_c \), is carried out with the Fountoukis and Nenes (FN; 2005) (1) droplet activation parameterization (augmented to account for depletion effects from Giant CCN; Barahona et al., 2010) (2). FN is a comprehensive and efficient formulation, which has been evaluated extensively with numerical simulations (1-3), as well as in situ measurements (4, 5). FN is based on the framework of an ascending adiabatic cloud parcel; \(N_c \) is determined by the maximum supersaturation, \(s_{\text{max}} \), which is controlled by the water vapor balance and is obtained by classifying the droplets by proximity to their critical diameter (“population splitting”). The effective water vapor uptake coefficient (which affects the water vapor mass transfer coefficient during droplet formation) is set to 0.06, following Fountoukis et al. (2007). (4) The model was integrated for 2 years with present-day emissions of sulfur and sea salt; monthly, grid-by-grid CCN spectra are then derived from the simulations of the second year.

Kinetics of Methylglyoxal Hydration and Oligomerization

Methylglyoxal (MG) rapidly reacts with water in aqueous aerosols to form hydrated methylglyoxal (HMG) according to:

\[\text{MG} + \text{H}_2\text{O} \leftrightarrow \text{HMG} \]
(S1)
According to the density functional theory calculations of Krizner et al. (6), the corrected free energy barrier for this process is 17.3 kcal mol\(^{-1}\), and the preexponential factor is \(5 \times 10^{11}\) M\(^{-1}\)s\(^{-1}\), yielding a pseudo-first-order rate constant at 298 K of approximately 6 s\(^{-1}\). Hence, the time required for methylglyoxal to be 98% converted to its singly hydrated form (7) is \(~0.7\) s. The apparent enhancement in MG uptake due to hydration is already accounted for in the effective Henry’s law constant reported by Betterton and Hoffmann (\(H^* = 3.2 \times 10^4\) M atm\(^{-1}\)) (7).

The kinetics of methylglyoxal oligomerization in aqueous solutions containing NH\(_4^+\) and H\(_3\)O\(^+\) were presented by Sareen et al. (8). It was found that the rate limiting step for the formation of oligomers was the protonation of singly hydrated MG by either NH\(_4^+\) or H\(_3\)O\(^+\), with second-order rate constants \(k_{H_3O^+}^{II} \leq 10^{-3}\) M\(^{-1}\)min\(^{-1}\) and \(k_{NH_4^+}^{II} = 5 \times 10^{-6}\) M\(^{-1}\)min\(^{-1}\). The conversion rate of HMG, is described by the following equation:

\[
R = (k_{H_3O^+}^{II}[H_3O^+] + k_{NH_4^+}^{II}[NH_4^+])(HMG)
\]

(S2)

In the aerosol experiments presented here, [NH\(_4^+\)] = 28 M and [H\(_3\)O\(^+\)] = 7 M. Because the oligomerization reactions are relatively slow compared to the diffusional timescale in the aerosol particle, \(\tau = R^2/D\), where \(R\) is the characteristic length scale and \(D\) is the diffusion coefficient, we expect that the concentration of HMG in the particle is spatially uniform and maintained relatively constant via MG absorption from the gas phase according to Henry’s Law. Based on a gas-phase MG concentration of 250 ppb, \([HMG] = 8 \times 10^{-3}\) M. After 3 hours of reaction, the total amount of MG sequestered as oligomeric products is between 2.02\times10^{-4} M and 1.03\times10^{-2} M. The total concentration of MG and products is then 0.031-6.06x10^{-4} mol C kg\(^{-1}\) H\(_2\)O.

Inorganic:Organic ratio

This ratio for the chamber filter extracts was calculated based on WSOC and IC analysis. The inorganic on the filter was 1.57x10^5 \(\mu\)g and the water soluble organic matter was 18.928 \(\mu\)g, giving a ratio of 829.4.
For comparison, this ratio is also calculated for the particles in the chamber. Based on 250 ppb of methylglyoxal in the chamber and a Henry’s Law constant of $3.2 \times 10^4 \text{ M atm}^{-1}$, the in-particle concentration of methylglyoxal is 0.008 M. Following Tang and Munkelwitz (9), a 0.2 M ammonium sulfate atomizer solution will lead to an in-particle concentration of 14 M at 65 % relative humidity. The inorganic:organic ratio for the chamber based on these numbers is 3209. The ratio of inorganic:organic material in the filter extracts is lower than that predicted based on Henry’s Law uptake of methylglyoxal to the particles. This could be due to continued reactive uptake of the gas-phase organic on the filter during particle collection.

Köhler theory analysis (KTA)

The following equations from Moore et al. (10) were used to infer surface tension of the particles:

\[
\sigma = \left[\frac{\rho}{M_o} \varepsilon_o v_o + \frac{\rho_i}{M_i} \varepsilon_i v_i \right]^{1/3} \left[\frac{256}{27} \left(\frac{M_w}{\rho_w} \right)^2 \left(\frac{1}{RT} \right)^3 \omega^{-2} \right] \tag{S3}
\]

where the subscripts i, o, and w refer to the inorganic, organic, and water respectively. M is the average molecular weight, ρ is the density, ν is the effective van’t Hoff factor, R is the universal gas constant, T is the median temperature of the CFSTGC column, σ is the surface tension, and ϵ is the mass fraction calculated as:

\[
\epsilon_i = \frac{m_i}{\rho_i} \left(\frac{m_i}{\rho_i} + \frac{m_o}{\rho_o} \right) \tag{S4}
\]

ω, the fitted CCN activity factor, is determined from the critical supersaturation (S_c) and the critical dry activation diameter (d_d) using the equation:

\[
S_c = \omega d_d^{-3/2} \tag{S5}
\]
Surface tension of the particle based on Henry's Law

The surface tension of the aerosol particles can be estimated using the Szyszkowski-Langmuir equation:

\[\sigma = \sigma_0 - aT \ln (1 + bC) \]

(S6)

where \(\sigma \) and \(\sigma_0 \) are the surface tension with and without the organics, respectively, \(T \) is temperature, \(C \) is the carbon content, and \(a \) and \(b \) are fit parameters. Although the particles studied here were composed of ammonium sulfate, we are interested in calculating the surface tension of the particle at the moment of activation. At that point, the particle is composed mostly of water. Therefore, values for \(a \) and \(b \) are taken from the surface tension measurements done on a methylglyoxal and water solution using pendant drop tensiometry: \(a = 0.0244 \, \text{dyn cm}^{-1} \, \text{K}^{-1} \) and \(b = 3.050 \, \text{kg water (mol C)}^{-1} \). \(\sigma_0 \) was tested in our laboratory using Millipore water and found to be 72.55 dyn cm\(^{-1}\).

\(C \) is calculated based on the assumption that the droplet is in Henry's Law equilibrium with the gas phase, and that the total contribution of oligomeric products formed prior to activation is small. Hence based on 250 ppb of methylglyoxal in the chamber (and CFSTGC), we calculate an \(8 \times 10^{-3} \, \text{M} \) methylglyoxal concentration, or \(0.0240 \, \text{mol C (kg water)}^{-1} \). Plugging these values into the Szyszkowski-Langmuir equation gives a value of 72.02 dyn cm\(^{-1}\) for the surface tension of the methylglyoxal and ammonium sulfate particles. Surface tension depression will lower the value of \(\kappa \) by a factor of

\[\left(1 - \frac{\Delta \sigma}{\sigma_0}\right)^{-3} \]

(S7)

where \(\Delta \sigma \) is the surface tension depression from that of pure water. In our case, the calculated surface tension value of 72.02 dyn cm\(^{-1}\) will lead to a very small (2.2%) increase in \(\kappa \), much less than the enhancement in CCN activity seen in our chamber studies.
For acetaldehyde, the constants a and b are taken from the surface tension measurements done on an acetaldehyde and water solution using pendant drop tensiometry: $a=0.0037 \text{ dyn cm}^{-1} \text{ K}^{-1}$ and $b=491.64 \text{ kg water (mol C)}^{-1}$ (11). Based on 250 ppb of acetaldehyde in the chamber and a Henry’s Law constant of 11.4 M/atm, the acetaldehyde concentration in a particle is $2.85 \times 10^{-6} \text{ M}$, or $5.7 \times 10^{-6} \text{ mol C (kg water)}^{-1}$. These values give a surface tension of 73.16 dyn cm$^{-1}$ for the surface tension of the acetaldehyde and ammonium sulfate particles and will lead to a negligible change in κ of 0.01%.

Concentration of methylglyoxal at the moment of activation

The critical wet diameter, D_c, is

$$D_c = \left(\frac{3\kappa}{A}\right)^{0.5} d_d^{1.5} \quad (S8)$$

where, κ is the hygroscopicity parameter, calculated from CCN activity data following Petters and Kreidenweis (12), and

$$A = \frac{4 \sigma M_w}{RT \rho_w} \quad (S9)$$

Based on the amount of methylglyoxal in the chamber, 250 ppb, we can calculate the number of molecules of methylglyoxal at each d_d. Since the number of molecules is constant in the particle, it can be divided by the corresponding volume at D_c to get the concentration at the activated diameter.

In the chamber experiments, the estimated concentration of methylglyoxal in the particles at the moment of activation (using Henry’s Law) ranged from $1.17 \times 10^{-5} – 3.22 \times 10^{-5} \text{ M}$ and for the filter extracts it was $1.24 \times 10^{-4} – 4.53 \times 10^{-5} \text{ M}$, orders of magnitude lower than for the atomized bulk solutions ($1.59 \times 10^{-2} – 2.86 \times 10^{-3} \text{ M}$).

Calibration of supersaturation in the CCN counter
The effective supersaturation in the CCN instrument depends on the flow rate, pressure and temperature gradient applied on the column (13). Scanning Mobility CCN Analysis (SMCA) with (NH$_4$)$_2$SO$_4$ calibration aerosol is used to determine supersaturation for a given set of operating conditions, following the procedure of Moore et al. (2010) (10). Calibration aerosol is generated by atomizing an ammonium sulfate solution in pure water. Atomized droplets were dried in a silica gel dryer and sampled by a differential mobility analyzer (DMA; TSI 3081 Long DMA) that classifies the aerosol and then introduced into the CFSTGC and a Condensation Particle Counter (CPC; TSI 3010). The voltage applied to the DMA was scanned, and inversion of the time series of CCN and CPC counts yields the fraction of classified particles that act as CCN (“activation curve”). The dry mobility diameter for which half of the classified particles act as CCN, d_{50}, is used to characterize instrument supersaturation (being equal to the critical supersaturation of particles with dry diameter equal to d_{50}). Köhler theory is used to compute the effective instrument supersaturation, assuming the (NH$_4$)$_2$SO$_4$ particles have (at the point of activation) the surface tension and density of pure water, and a variable van’t Hoff factor is used as described in Moore et al. (2010) (10).

The use of non-acidified (NH$_4$)$_2$SO$_4$ as the control

We have used ISORROPIA to compare the apparent hygroscopicity parameter, κ, for the acidified and non-acidified (NH$_4$)$_2$SO$_4$. The (NH$_4$)$_2$SO$_4$ compositions at pH = 0 and 2 are determined as follows: pure 0.2 M (NH$_4$)$_2$SO$_4$ is taken and enough H$_2$SO$_4$ is added so that the pH is 0 and 2, respectively. Assuming that H$_2$SO$_4$ (SA) and NH$_4$HSO$_4$ (AB) dissociate completely in solution, we have that the dry material is 37% (by mass) AB + 63% SA for the pH=0 aerosol, and, 6% AB + 94% (NH$_4$)$_2$SO$_4$ for the pH=2 aerosol.

These compositions are then used in ISORROPIA to determine the amount of water associated with each constituent (SA, AB, (NH$_4$)$_2$SO$_4$) at various RH values. Given that our dryer reaches 5-10% RH, for the pH=
solution there is about 25% (by volume) water. This is justified as H$_2$SO$_4$ is so hygroscopic, that it never releases all of its water even at single-digit RH. The particle sized at 5-10% RH will have 75% volume of salt and the rest is water. κ is then calculated to be \sim0.6. Similar results are seen for the pH=2 aerosol.

In both the acidified cases, κ is predicted to be close to that of pure (NH$_4$)$_2$SO$_4$, and hence we can use pure (NH$_4$)$_2$SO$_4$ as the control in our studies.

Depletion of methylglyoxal in the gas phase

We operate our chamber as a continuous flow stirred tank reactor. That is, after the initial startup period, conditions are at steady-state inside the chamber, and the residence time for gases and particles in the chamber, τ, is given by

$$
\tau = \frac{V}{F}
$$

where V is the reactor volume (3.5 m^3) and F is the total volumetric flowrate through the reactor.

We calculate the depletion of methylglyoxal in the chamber in two ways, firstly, assuming that Henry’s Law uptake is valid and secondly, based on surface adsorption.

Henry’s Law Uptake. Assuming Henry’s Law describes the uptake of gas-phase methylglyoxal (MG) to the particles, the particle-phase concentration of MG is directly proportional to the gas-phase concentration according to:

$$
\text{[MG]}_{aq} = H^* P_{MG}
$$

where H^* is the effective Henry’s Law constant. From Betterton and Hoffman (1988), $H^* = 3.2 \times 10^4 \text{ M atm}^{-1}$. Hence, with 250 ppb MG in the gas phase, $\text{[MG]}_{aq} = 8 \times 10^{-3} \text{ M}$.

After the particles have equilibrated with MG in the chamber, the maximum amount of MG taken up from the gas phase will be:

\[
\text{uptake} = N_p V_p [\text{MG}]_{aq} N_A = 2.5 \times 10^{11} \text{molec/(cm}^3 \text{ gas)}
\]

de \(N_p \approx 10^6 \text{ particles/(cm}^3 \text{ gas)}\), \(V_p = \frac{4}{3} \pi (231 \times 10^{-7} \text{ cm})^3 \left(\frac{1 \text{ L}}{1000 \text{ cm}^3} \right) \) [=] \(L\) particle\(^{-1}\), and \(N_A = \) Avogadro’s number. 250 ppb corresponds to a total initial gas-phase MG concentration of \(6.15 \times 10^{12} \text{ molec cm}^{-3}\). Therefore, uptake of MG to the particles will deplete the gas-phase concentration by at most 4%. For the 8 ppb MG case, the depletion is negligible.

Surface Adsorption. We may also assume a model of adsorption of gas-phase MG to the particle surface. A reasonable estimate is that each MG molecule occupies 50 Å\(^2\) on the surface. In this case, the formation of a full monolayer of MG on one 203 nm (surface-weighted) particle will result in the uptake of \(1.04 \times 10^6 \) molecules of MG. There are no experimental data available to allow us to predict the surface coverage as a function of MG partial pressure so we will assume full monolayer coverage in these calculations.

After the particles have equilibrated with MG in the chamber, the maximum amount of MG taken up from the gas phase (per cm\(^3\) of gas) will be \(1.04 \times 10^{12} \text{ molec cm}^{-3}\) of MG, 5x that taken up in the Henry’s Law scenario. This would result in up to 16% depletion of gas-phase MG. For the 8 ppb MG, we estimate 14% depletion.

We also performed similar calculations for observed concentrations in the atmosphere (urban: \(10^4 \text{ cm}^{-3}\), 2.5 ppb MG; wet-season Amazon: \(10^2 \text{ cm}^{-3}\), 0.125 ppb MG). Based on Henry’s Law, we calculate negligible depletion for both urban and wet-season Amazon. Taking into account only surface adsorption, we calculate 17% depletion in the urban scenario and 3% depletion in the Amazon. Hence we do not anticipate depletion effects to be prominent. Given that we are considering full monolayer...
coverage, these calculations represent the upper limit for depletion. For acetaldehyde, we expect lesser depletion since its Henry’s Law constant is 1000 times smaller than methylglyoxal and it is also slightly more prominent in the atmosphere as compared to methylglyoxal.
Supplementary Figure S1: Cloud condensation nuclei (CCN) activity data. Humidified, acidified (NH$_4$)$_2$SO$_4$ aerosols were exposed to gas-phase methylglyoxal or acetaldehyde in a 3.5 m3 Teflon reaction chamber or a glass flow tube for varying residence times. The critical dry diameters observed for each experiment as a function of instrument supersaturation are compared to the

Critical supersaturation [%]
60 55 50 45 40 35 30

Critical dry diameter [nm]
3 hr MG - 250 ppb

Critical supersaturation [%]
60 55 50 45 40 35 30

Critical dry diameter [nm]
3 min MG - 250 ppb

Critical supersaturation [%]
60 55 50 45 40 35 30

Critical dry diameter [nm]
3 min MG - 8 ppb

$\kappa = 0.6$

$\kappa = 1$

$\kappa = 0.6$

$\kappa = 0.7$
(NH₄)₂SO₄ control (purple diamonds) in order to demonstrate the effect of organics. Closed and open symbols represent the first and second trials for each time point, respectively. The small graphs on the right side represent the entire range of supersaturations studied, whereas the main plots zoom in on the smaller diameters. The dashed lines show values of constant κ, ranging from our (NH₄)₂SO₄ control (κ~0.6) to the maximum κ value observed for each experiment. Panels (a) and (b) show the results for particles exposed to 250 ppb and 8 ppb of methylglyoxal for 5 h, respectively. Panels (c) and (d) show the results for particles exposed to 250 ppb and 8 ppb of acetaldehyde for 5 h, respectively. In panel (e), particles were exposed to 8 ppb of methylglyoxal and 8 ppb of acetaldehyde for 5 h. In panel (f), particles were exposed to 250 ppb of methylglyoxal for 3 h. Panels (g) and (h) show the results for particles exposed to 250 ppb and 8 ppb of methylglyoxal for 3 min in the flowtube reactor, respectively.

Supplementary Figure S2: Hygroscopicity parameter, κ, data. Humidified, acidified (NH₄)₂SO₄ aerosols were exposed to gas-phase methylglyoxal or acetaldehyde in a 3.5 m3 Teflon reaction chamber. The κ values for each experiment as a function of instrument supersaturation are compared to the (NH₄)₂SO₄ control in order to demonstrate the effect of organics. The data shown here are the results for (NH₄)₂SO₄ particles exposed to 250 ppb and 8 ppb of methylglyoxal for 5 h, particles exposed to 250 ppb and 8 ppb of acetaldehyde for 5 h, and finally particles exposed to a mixture of 8 ppb of methylglyoxal and 8 ppb of acetaldehyde for 5 h.
Supplementary Figure S3: SMPS data showing the number size distribution of particles over time. 150 nm particles were size-selected using the DMA and put into the chamber. As can be seen, there is negligible particle growth.

Supplementary Figure S4: CFSTGC data of the extracted filter samples obtained by pumping down the chamber for ~14 h following the 5 h run. The dry diameters are compared to the (NH₄)₂SO₄ control.
Supplementary Figure S5: CFSTGC data from organics in solution compared to the (NH₄)₂SO₄ control. The plot includes: (NH₄)₂SO₄ solution, methylglyoxal solution, methylglyoxal/(NH₄)₂SO₄ solution, acetaldehyde solution, acetaldehyde/(NH₄)₂SO₄ solution, methylglyoxal/acetaldehyde solution, and methylglyoxal/acetaldehyde/(NH₄)₂SO₄ solution.

Supplementary Table S1: Exponents of the power log fits for the SS vs dry diameter graphs for the various chamber experiments. As expected, these values deviate from the pure AS calibration curve.

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Average power log fits (exponent)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(NH₄)₂SO₄</td>
<td>-1.52±0.03</td>
</tr>
<tr>
<td>5 hr 250 ppb MG</td>
<td>-1.34±0.09</td>
</tr>
<tr>
<td>3 hr 250 ppb MG</td>
<td>-1.37</td>
</tr>
<tr>
<td>3 min 250 ppb MG</td>
<td>-1.42±0.03</td>
</tr>
<tr>
<td>5 hr 8 ppb MG</td>
<td>-1.34±0.09</td>
</tr>
<tr>
<td>3 min 8 ppb MG</td>
<td>-1.51</td>
</tr>
<tr>
<td>5 hr 250 ppb AC</td>
<td>-1.47±0.06</td>
</tr>
<tr>
<td>5 hr 8 ppb AC</td>
<td>-1.59±0.001</td>
</tr>
<tr>
<td>5 hr 8 ppb AC, 8 ppb MG</td>
<td>-1.57±0.04</td>
</tr>
</tbody>
</table>
Supplementary Table S2: Hygroscopicity parameter, κ, values for the different bulk studies. Bulk aqueous solutions containing 0.5 M of the organic (methylglyoxal and/or acetaldehyde) with and without 3.1 M $(\text{NH}_4)_2\text{SO}_4$ were allowed to react for 24 h, and were then atomized and analyzed using the CFSTGC.

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Average κ</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(\text{NH}_4)_2\text{SO}_4$</td>
<td>0.60±0.18</td>
</tr>
<tr>
<td>0.5 M MG</td>
<td>0.12±0.04</td>
</tr>
<tr>
<td>0.5 M MG, 3.1 M $(\text{NH}_4)_2\text{SO}_4$</td>
<td>0.68±0.09</td>
</tr>
<tr>
<td>0.5 M AC</td>
<td>0.44±0.13</td>
</tr>
<tr>
<td>0.5 M AC, 3.1 M $(\text{NH}_4)_2\text{SO}_4$</td>
<td>0.62±0.19</td>
</tr>
<tr>
<td>0.5 M MG, 0.5 M AC</td>
<td>0.11±0.03</td>
</tr>
<tr>
<td>0.5 M MG, 0.5 M AC, 3.1 M $(\text{NH}_4)_2\text{SO}_4$</td>
<td>0.59±0.18</td>
</tr>
</tbody>
</table>

Supplementary Table S3: Statistical analysis for hygroscopicity parameter, κ. T-test at the 90% confidence level is conducted for the various chamber experiments, to determine how statistically different they are from the $(\text{NH}_4)_2\text{SO}_4$ control.

<table>
<thead>
<tr>
<th>Experiment</th>
<th>t</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 hr 250 ppb MG</td>
<td>-3.36</td>
<td>0.0153</td>
</tr>
<tr>
<td>5 hr 8 ppb MG</td>
<td>2.072</td>
<td>0.107</td>
</tr>
<tr>
<td>5 hr 250 ppb AC</td>
<td>-4.24</td>
<td>0.0133</td>
</tr>
<tr>
<td>5 hr 8 ppb AC</td>
<td>-5.82</td>
<td>0.0043</td>
</tr>
<tr>
<td>5 hr 8 ppb AC, 8 ppb MG</td>
<td>-8.18</td>
<td>0.0012</td>
</tr>
</tbody>
</table>
References