Scanning Mobility CCN Analysis: A method for fast measurements of size-resolved CCN distributions and activation kinetics

Richard H. Moore
School of Chemical & Biomolecular Engineering, Georgia Institute of Technology

Athanasios Nenes
Schools of Earth & Atmospheric Sciences and Chemical & Biomolecular Engineering, Georgia Institute of Technology

Jeessy Medina
School of Chemical & Biomolecular Engineering, Georgia Institute of Technology

Abstract. We present Scanning Mobility CCN Analysis (SMCA) as a novel method for obtaining rapid measurements of size-resolved cloud condensation nuclei (CCN) distributions and activation kinetics. SMCA involves sampling the monodisperse outlet stream of a Differential Mobility Analyzer (DMA) operated in scanning voltage mode concurrently with CCN and condensation particle counters. By applying the same inversion algorithm as used for obtaining size distributions with a scanning mobility particle sizer (SMPS), CCN concentration and activated droplet size are obtained as a function of mobility size over the timescale of an SMPS scan (typically 60-120s). Methods to account for multiple charging, non-sphericity effects and limited counting statistics are presented. SMCA is demonstrated using commercial SMPS and CFSTGC instruments with the manufacturer-provided control software. The method is evaluated for activation of both laboratory aerosol and ambient aerosol obtained during the NEAQS-ITCT2k4 field campaign. It is shown that SMCA reproduces the results obtained with a DMA operating in voltage “stepping” mode.

1. Introduction

Predictive understanding of aerosol-cloud interactions in climate and hydrological cycle studies (e.g., Intergovernmental Panel on Climate Change (IPCC) [2007]; International Aerosol Precipitation Science Assessment Group (IAPSAG) [2007]) requires a global network of cloud condensation nuclei (CCN) measurements. With the advent of the Continuous-Flow Streamwise Thermal Gradient CCN Chamber (CFSTGC; Roberts and Nenes [2005]) and its commercialization by Droplet Measurement Technologies [Lance et al., 2006; Rose et al., 2008], this is rapidly becoming a reality.

CCN instruments can be utilized in various ways to complement aerosol-cloud interaction studies. They can be used as “counters”, where the concentration of CCN is measured at a given level of supersaturation. This mode of operation is commonly used for “CCN closure” studies, i.e., to assess the ability of thermodynamic theory to predict CCN concentrations from measurements of aerosol size distribution and chemical composition [e.g., Rose et al., 2010; Jurányi et al., 2010; Bougiatioti et al., 2009; Lance et al., 2009; Cubison et al., 2008; Sorooshian et al., 2008; Wang et al., 2008; Vestin et al., 2007; Medina et al., 2007; Broekhuizen et al., 2006, and others]. The maximum potential of CCN measurements is realized when CCN instruments, operating in either counting mode or in “spectrometer” mode [Moore and...
Moore et al.

Figure 1. Schematic of the setup used for the Scanning Mobility CCN Analysis (SMCA).

Nenes, 2009], are coupled with a differential mobility analyzer (DMA) to obtain size-resolved measurements. These methods provide the CCN concentration across supersaturations and particle sizes, which when coupled with theory, enables the parameterization of composition impacts on cloud droplet formation [e.g., Rose et al., 2010; Gunthe et al., 2009; Asa-Awuku et al., 2008; Petters et al., 2007, and others]. The technique described in this manuscript, entitled “Scanning Mobility CCN Analysis” (SMCA), provides an alternative method for performing size-resolved CCN measurements; the DMA is operated as a Scanning Mobility Particle Sizer and the voltage is ramped exponentially, typically over a period of 60-120 seconds [Wang and Flagan, 1989]. SMCA has been successfully applied in a number of studies [Padró et al., 2007; Asa-Awuku et al., 2008, 2010, 2009; Engelhart et al., 2008; Moore et al., 2008; Padró et al., 2010] and presented in detail here. SMCA can be applied to commercial SMPS and CFSTGC instruments with the manufacturer-provided control software coupled with a simple post-processing routines (available for download from http://nenes.eas.gatech.edu). In subsequent sections, we present SMCA, an overview of the data analysis, and validation of the method with both laboratory aerosol and ambient aerosol sampled during the 2004 ICARTT-ITCT2k4 field campaign.

2. Description of SMCA

2.1. Instrumentation Setup

The instrumentation setup is shown in Figure 1. Polydisperse dry aerosol is charge-neutralized using a Kr-85 neutralizer (TSI 3077A) and introduced into a differential mobility analyzer (DMA, TSI 3081L) for classification by electrical mobility. The classified aerosol is then split between a condensation particle counter (CPC, TSI 3010 or 3022a) for measurement of total aerosol (condensation nuclei, CN) concentration, and a Droplet Measurement Technologies Continuous-Flow, Streamwise Thermal-Gradient Chamber (CFSTGC) [Roberts and Nenes, 2005; Lance et al., 2006; Rose et al., 2008] to measure CCN concentrations. In order to maintain a sample flow rate of 1 LPM through the DMA, filtered make-up air is supplied to the classified aerosol stream or to the CPC stream (the latter being preferable in cases where low aerosol concentrations limit the counting statistics in the CFSTGC). In this study, the voltage applied to the DMA is exponentially scanned using the TSI Aerosol Instrument Manager control software, which also manages data acquisition in the CPC and inversion to provide the aerosol number size distribution. The software also provides the raw CN counts...
Scanning Mobility CCN Analysis

Figure 2. Example of CCN (red), CN (blue) timeseries and inverted activation curve (green). CCN, CN data are presented in terms of raw counts accumulated over 1s, and the corresponding concentrations. Error bars represent the propagated uncertainty, calculated using Equations 5 to 6. Results shown for laboratory-generated aerosol with a total number concentration of (a) 4×10^5 cm$^{-3}$, and (b) 200 cm$^{-3}$. Counting statistics limitations are addressed by averaging (post-measurement) consecutive 1s bins, the number of which is noted beside each point.

reported by the CPC every 0.1 s during each scan cycle. While not further discussed here, any instrument control software could be used to control and invert the SMPS data.

The CFSTGC consists of a cylindrical growth chamber with internally-wetted walls upon which a constant streamwise temperature gradient is applied. The difference between the diffusivity of heat and water vapor generates a supersaturation that depends on the flow rate, the streamwise temperature gradient and the pressure in the chamber. Figure 1 illustrates the components and flow diagram of the CFSTGC. The inlet flow is first split into “sheath” and “sample” flows. The latter is directed to the center of the growth chamber, whereas the “sheath” flow is filtered and humidified prior to its entry in the chamber. Both flows travel through the column, exposing aerosol about the centerline to an approximately constant supersaturation (after the decay of entry length effects), a fraction of which activate to form cloud droplets. An optical particle counter (OPC) then counts and sizes the activated droplets at the outlet of the column. The CCN counts are accumulated over a time period of 1s. The relationship between instrument supersaturation and operating conditions (column temperature gradient, flow rate and column pressure) is determined using calibration aerosol, following the procedure of Lance et al. [2006], Rose et al. [2008], and Bougiatioti et al. [2009].

2.2. Application of SMCA

The DMA voltage is continuously cycled between a minimum and maximum value, and the timeseries of CN and CCN counts are recorded (examples are presented in Figure 2a, 2b for high and low aerosol concentration, respectively). The particle size distribution is then obtained from the CN timeseries using well-established SMPS inversion techniques (e.g., Crump and Seinfeld [1982]; Hagen and Alofs [1983]; Wang and Flagan [1989]; Russell et al. [1995]; Collins et al. [2002]). In this study, the CN timeseries is inverted using the TSI AIM software (which uses the method of Wang and Flagan [1989]). The timeseries of CN, CCN is used to determine the “activation” ratio of CCN to CN concentration, R_a, (see right ordinate axis in Figure 2) and applied to the inverted aerosol size distribution to obtain the CCN size distribution (discussed in section 2.3).

For this study, the centroid mobility diameter obtained from the DMA ranged between 10 and 300 nm, size distribution scans were obtained every 135 or 270 seconds (120/240 seconds for the voltage “upscan”, and, 15/30 seconds for the voltage “downscan”, respectively), where the longer scan time was applied for low concentration measurements to improve counting statistics. The sample flow rate in the DMA was adjusted to be 1 L min$^{-1}$ and the sheath-to-aerosol flow was maintained at a 10:1 or 5:1 ratio. The TSI 3010 CPC (used in the field experiments) operates at 1 L min$^{-1}$, while the TSI 3022a (used in the laboratory experiments) operates at 1.5 L min$^{-1}$ (with a 0.3 L min$^{-1}$ internal flow). The CCN counter was operated at a flow rate of 0.5 L
min\(^{-1}\) at a sheath-to-aerosol flow ratio of 10:1. The supersaturation at the CCN counter is changed every 3-4 voltage scan cycles in the DMA (by changing either the flow rate or the streamwise temperature gradient). Whenever the temperature gradient is changed, up to 2 minutes are required for the instrument profiles to stabilize.

2.3. Data Inversion and Multiple Charge Correction

The inversion to obtain CCN and CN size distributions is applied to the data collected during the voltage upscan. The CPC and CCN counts time series are obtained from the AIM software and CFSTGC software, respectively, and are normalized by flow rate to express them in terms of number concentration. The time series are aligned by matching the minimum in counts that occurs during the transition between upscan and downscan (Figure 2). Owing to the longer plumbing time associated with the CFSTGC, its minimum occurs some fixed time after the corresponding CPC signal (here about 15 seconds). After alignment, the CCN time series is mapped into size space using the size-scantime relationship provided by the AIM software, respectively, and are normalized by flow rate to stabilize.

The aligned CN and CCN timeseries are binned to a common time grid. The grid spacing by default is 1s (the reporting time of the CFSTGC), although it can vary to ensure sufficient counting statistics.

An estimate of the size-dependent activation efficiency, \(R_a(D_p) = C_{CCN}(D_p)/C_{CN}(D_p)\), is obtained from the CCN and CN timeseries and the size-scantime relationship provided by the AIM software.

The CN and CCN timeseries are then corrected for multiple-charging. Starting from the largest aerosol size bin of the CN timeseries (and moving to each successive smaller bin), the number of particles with +2 and +3 charges are removed and placed in the CN timeseries bin with the correct mobility diameter. The procedure starts from the largest size, because an impactor is placed in front of the sample flow of the DMA, so that the largest size bin in the inverted distributions (corresponding to the 50% cutoff diameter of the impactor) contains only singly-charged particles.

The number of multiply-charged particles is computed assuming equilibrium charging in the aerosol neutralizer. For particles with \(n = +1, +2\) charges, expressions from Wiedensohler [1988] are used to compute the fraction of particles with dry size \(D_p\) (here equal to the centroid mobility diameter of each aerosol size bin) and \(n\) charges, \(f(D_p, n)\),

\[
f(D_p, n) = 10 \left(\sum_{i=0}^{5} a_i(n) (\log D_p)^i \right)
\]

where \(a_i(n)\) are empirical coefficients presented in Wiedensohler [1988]. For \(n = +3\), the parameterization presented in TSI [2003]; Gunn [1955]; Gunn and Woessner [1956] is used,

\[
f(D_p, +3) = \Phi \exp \left(-\frac{n - 2\pi eD_p kT}{e} \ln \left(\frac{Z_{+i}/Z_{-i}}{Z_{+i}/Z_{-i}} \right) \right)
\]

where \(\Phi = \frac{e}{\sqrt{4\pi \varepsilon_0 D_p kT}}\), \(e\) is the elementary charge, \(\varepsilon_0\) is the dielectric constant of air, \(k\) is the Boltzmann constant, \(T\) is absolute temperature, and \(Z_{+i}/Z_{-i} = 0.875\) is the ion mobility ratio [TSI, 2003].

Calculation of the mobility diameter is done using the fundamental DMA equation [Wang and Flagan, 1989]:

\[
\frac{D_p}{n C_{CCN}(D_p)} = \frac{2eV(t)}{\mu q_a ln 2 \frac{r_2^3}{r_1^2}}
\]

where \(C_{CCN}(D_p) = 1 + \frac{2a}{D_p} \left[1.257 + 0.4 \exp \left(-\frac{1.1 D_p}{2a} \right) \right]\) is the size-dependent Cunningham slip correction factor [Seinfeld and Pandis, 2006], \(V(t)\) is the applied voltage at a given time \(t\) during the scan, \(\mu\) is the viscosity of air, \(q_a\) is the sheath flow rate, and \(r_1, r_2\) are the inner and outer radii of the DMA annular space, respectively.

The CCN timeseries is processed similarly to the CN timeseries, with the difference that the CCN counts in each size bin \(j\) is multiplied by \(R_a(D_{p_j})\).
6. The processed CCN and CN timeseries are used to update $R_a(D_p)$; Steps 4-6 are iterated until convergence of $R_a(D_p)$ (typically within 2-3 iterations).

7. The CCN number size distribution at the instrument supersaturation, $n_s(D_p)$, is given by $n_s(D_p) = R_a(D_p) n_a(D_p)$.

The above algorithm is one of numerous approaches presented in the literature to correct for multiply-charged particles in size-resolved CCN measurements using electrical mobility classification. Frank et al. [2006] corrected for multiple charging by removing the fraction of particles with +2 or more charges scaled by an activation efficiency determined from an average of five iterations minimizing the multiple charge fraction, and activation efficiency. By iteratively minimizing the χ^2 statistic, the activation efficiency of the particle distribution can be determined with a substantial fraction of multiply-charged particles. King et al. [2009] simulate the instrument response by employing a function similar to Petters et al. [2007], but with a binary activation efficiency (being unity if activated, or zero if unactivated) based on the size-dependent critical supersaturation computed from Köhler Theory (using measured composition and assumed organic properties). Petters et al. [2009] developed a matrix form of the inversion used by Petters et al. [2007] to calculate the activation efficiency from the measured CCN and CN size distribution without an iterative process. All the above methods do not employ the DMA in scanning voltage mode.

Particle sphericity is often assumed to determine the diameter corresponding to the centroid mobility of each size bin; this may lead to important sizing biases for non-spherical particles (e.g., black carbon, mineral dust, or crystalline inorganics). This issue can be accounted for by using a “dynamic shape factor”, which accounts for the difference in hydrodynamic drag force experienced by a non-spherical particle compared to a spherical particle of the same mass. Shape factors for pure salts are often known (e.g., 1.08 for NaCl, Kämmer et al. [2000]), but its determination for ambient particles may require auxiliary measurements of aerodynamic sizing (e.g., DeCarlo et al. [2004]; Kuwata and Kondo [2009]).

3. Measurement Uncertainty

As with all particle detection methods, sufficient counting statistics are required to obtain meaningful distributions. Both the CFSTGC and the CPC accumulate counts, N, over a time period τ_{accum}. N is then divided by the volume of aerosol sample, Q_a, that flows through the optics (during τ_{accum}) to provide the concentration of CN, CCN (C_{CN}, C_{CCN}). The relative uncertainty in concentration, ε_C, is then determined from the relative counting uncertainty, ε_N, and the flow rate uncertainty, ε_{Q_a}, as

$$
\varepsilon_C^2 = \left(\frac{\sigma_C}{C} \right)^2 = \varepsilon_N^2 + \varepsilon_{Q_a}^2
$$

where σ_C is the absolute concentration uncertainty and ε_N, ε_{Q_a} are the relative uncertainties of N and Q_a, respectively. Q_a is continuously measured in the instrument, so ε_{Q_a} can be directly determined as $\frac{\sqrt{\varepsilon_{Q_a}^2}}{Q_a}$. The CFSTGC samples at a lower flow rate (0.018–0.25 L min$^{-1}$) than either of the CPCs in this work. For the CFSTGC, ε_{Q_a} almost never exceeded 4%, reported flow rate uncertainties for the TSI 3010 CPC and TSI 3022a CPC are 10% and 5%, respectively. Assuming that particles are randomly distributed in space throughout the sampled volume, Poisson statistics can be used to estimate ε_N, since the sample standard deviation equals the square root of the mean ($\varepsilon_N = \sqrt{\frac{N}{\tau_{\text{accum}}}} = N^{-1/2}$). Accumulating counts over τ_{accum} seconds, yields a modified form of Equation 4,

$$
\varepsilon_C^2 = \left(\frac{CQ_a}{\tau_{\text{accum}}} \right)^{-1} + \varepsilon_{Q_a}^2
$$

Then, the combination of applying 5 for C_{CCN} and C_{CN} yields the uncertainty for the activation efficiency, $R_a = \frac{C_{\text{CCN}}}{C_{\text{CN}}}$, as

$$
\varepsilon_{R_a}^2 = \left(\frac{C_{\text{CN}}Q_{\text{CCN}}}{\tau_{\text{accum}}} \right)^{-1} + \left(\frac{C_{\text{CCN}}Q_{\text{CCN}}}{\tau_{\text{accum}}} \right)^{-1} + \varepsilon_{Q_{\text{CCN}}}^2 + \varepsilon_{Q_{\text{CN}}}^2
$$

Table 1 provides values of $\varepsilon_{C_{\text{CCN}}}$ and $\varepsilon_{C_{\text{CN}}}$ for selected values of C_{CN} (evaluated at $R_a = 0.5$). A sample flow rate in the CFSTGC of 0.045 L min$^{-1}$ is assumed (total flow rate of 0.5 L min$^{-1}$, 10:1 sheath-to-aerosol flow ratio) and a 0.3 L min$^{-1}$ internal flow rate is assumed for the TSI 3022a CPC. Thus, for most atmospherically-relevant CN concentrations, $\varepsilon_{C_{\text{CN}}}$ is 7% or less, while $\varepsilon_{C_{\text{CCN}}}$ is less than 17% and ε_{R_a} is less than 18%.

The validity of applying Poisson statistics to approximate the concentration uncertainty was confirmed
Table 1. Calculated relative uncertainty in CN Concentration, C_{CN}, CCN Concentration, C_{CCN}, and Activated Ratio, R_a, (evaluated at $R_a=0.5$) for selected values of C_{CN}.

<table>
<thead>
<tr>
<th>C_{CN} (cm$^{-3}$)</th>
<th>$\varepsilon_{C_{CCN}}$</th>
<th>$\varepsilon_{C_{CN}}$</th>
<th>ε_{R_a}</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>0.37</td>
<td>0.11</td>
<td>0.38</td>
</tr>
<tr>
<td>100</td>
<td>0.17</td>
<td>0.067</td>
<td>0.18</td>
</tr>
<tr>
<td>200</td>
<td>0.12</td>
<td>0.059</td>
<td>0.14</td>
</tr>
<tr>
<td>1000</td>
<td>0.065</td>
<td>0.052</td>
<td>0.083</td>
</tr>
<tr>
<td>2000</td>
<td>0.054</td>
<td>0.051</td>
<td>0.074</td>
</tr>
</tbody>
</table>

Experimentally by activation of classified $(\text{NH}_4)_2\text{SO}_4$ aerosol of 80-600 nm diameter at CFSTGC supersaturations between 0.16% and 0.39%. A comparison between predicted and observed ε_N exhibits excellent agreement (not shown).

4. Evaluation of SMCA

4.1. SMCA for laboratory aerosol

SMCA was evaluated using aerosol generated via atomization of an aqueous salt solution, followed by drying of the droplets with silica gel diffusion dryers. The dry polydisperse aerosol was introduced into a DMA, which was operated using both SMCA and “stepping mode”. Figure 3 displays R_a as a function of mobility diameter, when the DMA is operated in scanning mode (closed symbols) and stepping mode (open symbols). Data is shown for aerosol composed of $(\text{NH}_4)_2\text{SO}_4$ (top panel) and NaCl (bottom panel). Noted on each curve is the temperature difference across the growth chamber used to generate supersaturation. Ordinate error bars represent the standard deviation of 3 scan repetitions (at each size); abscissa error bars are the half-width of the DMA transfer function ($\pm 5\%$ for the 10:1 sheath-to-aerosol ratio used). Activation curves obtained using SMCA and “stepping mode” of the DMA are largely identical. There is a slight “broadening” of the activation curves with multiple charge correction. Prior to correction, minor secondary activation peak to the left of d_{50} was observed (Figure 4). When multiple charge correction is applied, the secondary peak vanishes, and the slope of the sigmoid steepens (Figure 4). The relative uncertainty in d_{50} associated with neglecting multiple charges is approximately 3–4%, consistent with the results of Rose et al. [2008] (whom operated the DMA in “voltage-stepping” mode).

d_{50} corresponds to the particle with critical supersaturation equal to the instrument supersaturation, and should not change if the DMA is operated in “stepping” or “scanning” mode. This is shown in Figure 5a,
Figure 4. Activation curves obtained by SMCA. Shown are inversions without (open symbols) and with multiple-charge corrections (filled symbols). Noted on each curve are the aerosol composition and the temperature difference across the growth chamber used to generate supersaturation.

which presents \(d_{50} \) (determined by both methods) for \((NH_4)_2SO_4\) (open symbols) and NaCl (filled symbols) aerosol. Error bars represent the half-width of the DMA transfer function (±5%). The excellent agreement in \(d_{50} \) between both methods implies that calibration of instrument supersaturation should also be in agreement. This is shown in Figure 5b; Köhler Theory [Seinfeld and Pandis, 2006] is applied to compute the critical supersaturation of particles \(s_c \) from knowledge of \(d_{50} \) and chemical composition:

\[
s_c = \left(\frac{4A^3}{27B} \right)^{1/2}
\]

where \(A = \frac{4M_w\sigma_w}{\rho_w RT} \), \(B = \frac{\phi_s \nu_s \rho_s d_{50}^3}{\rho_w M_w} \) and \(M_w, \sigma_w, \rho_w \) is the molar mass, surface tension and density of water, respectively. \(\phi_s, \nu_s, \) and \(\rho_s \) are the osmotic coefficient, stoichiometric van’t Hoff factor, and density of the solute, respectively. A dynamic shape factor of 1.08 was applied to \(d_{50} \) to account for the non-sphericity of NaCl [Kümer et al., 2000]. \(\phi_s \) accounts for incomplete solute dissociation and was calculated for \((NH_4)_2SO_4\) and NaCl using the ion-interaction approach of Pitzer and Mayorga [1973] with parameters taken from Clegg and Brimblecombe [1988]. Instrument supersaturation calibrated by “stepping” or “scanning” modes are virtually identical; at the lower supersaturation, there is a minor (≈3%) difference in supersaturation from the

smearing effect of the long integration time of the CF-STGC OPC.

SMCA also allows for the measurement of the size of activated CCN (droplets) exiting the flow chamber, as a function of particle dry diameter. An example is shown in Figure 6, where the (wet) size of the activated CCN detected in the OPC is plotted against dry
Figure 6. Size of activated (NH₄)₂SO₄ particles measured at the OPC of the CCN instrument, as a function of dry mobility diameter and instrument supersaturation for the data presented in Figure 3.

4.2. SMCA for ambient aerosol

SMCA was used for ambient aerosol measurements obtained at the University of New Hampshire (UNH) AIRMAP Observing Station (http://airmap.unh.edu) at Thompson Farm. The site is located in Durham, NH, approximately two miles south of the University of New Hampshire (43.11N, 70.95W, elevation 75ft). The aerosol at this location is an internal mixture of organic and inorganic material and is ideal for evaluating SMCA. A detailed description of the station and dataset can be found in Medina et al. [2007]; data shown here were collected on August 8th, 2004, during the NEAQS-ITCT2K4 campaign (July-August 2004).

Figure 7 presents exemplary aerosol size distributions and activation efficiency curves sampled at three different supersaturations. As expected, the CCN distribution increasingly converges towards the total aerosol number size distribution as the instrument supersaturation increases. If particle composition is size-invariant, the CCN distribution would be zero for all sizes less than a single characteristic value (i.e., where the particle critical supersaturation equals the instrument supersaturation), and the sigmoidal activation curve would appear as a step function. This is not the case however in Figure 7, as chemical heterogeneity (size-dependant composition and mixing state) broadens the transition towards activation.

We test SMCA by assessing “closure” with another CCN instrument. This is done by comparing total CCN concentrations obtained by integration of the differential size spectra (like those in Figure 7) with measurements obtained independently with another CCN instrument measuring the total aerosol distribution. The CCN concentrations from the integrated SMCA distributions agree with CCN measurements obtained with the other CFSTGC to within measurement variability (Figure 8).

5. Summary-Conclusions

We present Scanning Mobility CCN Analysis (SMCA), a novel method for obtaining fast measurements of size-resolved CCN activity and growth kinetics, by coupling a CPC and a CCN counter with the monodisperse outlet stream of a scanning DMA. By applying the same
inversion algorithm as is currently used for obtaining size distributions, CCN activity and droplet growth kinetics are obtained as a function of mobility size over the timescale of a SMPS scan. The performance of the new method is evaluated for activation of laboratory-generated aerosol composed of (NH$_4$)$_2$SO$_4$, NaCl and for ambient aerosol measured at the AIRMAP Thompson Farm site during the ITCT2K4 field campaign. Overall, SMCA performs remarkably well, as essentially identical CCN properties are seen measured with “scanning” and “stepping” modes of the DMA.

SMCA has been successfully used in studies focused on size-resolved CCN measurements [e.g., Padró et al., 2007; Asa-Awuku et al., 2008, 2010, 2009; Engelhart et al., 2008; Moore et al., 2008; Padró et al., 2010]. The fast time response and ease of setting up SMCA are attractive features, especially if measurements are to be carried out in polluted environments and the laboratory (where counting statistics are most favorable for rapid measurements). SMCA can also be used to study the size-resolved CCN activity in clean environments, at the expense of some temporal (or size) resolution. Finally, SMCA can be applied to commercial SMPS and CFSTGC instruments with the manufacturer-provided control software coupled with a simple post-processing routines (available for download from http://nenes.eas.gatech.edu) to align the instrument response curves, correct for multiple charges, and correct for the non-sphericity of the aerosol.

Acknowledgments. We acknowledge the support of a National Science Foundation CAREER award and the National Oceanic and Atmospheric Administration under grant NA04OAR4310088. RHM acknowledges support from a DOE Graduate Research Environmental Fellowship and a Georgia Tech Presidential Fellowship. JM acknowledges support from a NASA Earth System Science Fellowship. We thank A. Asa-Awuku, K. Bougiatioti, G. Engelhart, P. Kumar, T. Latham, L. Padró and T. Raymond for their feedback on the SMCA inversion software. We also thank S. Lance, three anonymous reviewers and the editor (S. Hering) for feedback that substantially improved the manuscript.

References

Lance, S., A. Nenes, C. Mazzoleni, M. Dubey, H. Gates, V. Varutbangkul, T. A. Rissman, S. M. Murphy, A. Sorooshian, F. Brechtel, R. Flagan, J. Seinfeld, G. Feingold, and H. Jonsson, CCN activity, closure and droplet growth kinetics of Houston aerosol during the Gulf of Mexico Atmospheric Composition and Climate Study (GoMACCS), *J. Geophys. Res.*, 114(D00F15), 2009.

