A series of controlled laboratory experiments are carried out in dual teflon chambers to examine the presence of oligomers in secondary organic aerosols (SOA) from hydrocarbon ozonolysis as well as to explore the effect of particle phase acidity on SOA formation. In all seven hydrocarbon systems studied, i.e., α-pinene, cyclohexene, 1-methyl cyclopentene, cycloheptene, 1-methyl cyclohexene, cyclooctene, and terpinolene, oligomers with MW from 250 to 1600 are present in the SOA formed, both in the absence and presence of seed particles and regardless of the seed particle acidity. These oligomers are comparable to,
and in some cases, exceed the low-MW species (MW < 250) in ion intensities in the ion trap mass spectra, suggesting they may comprise a substantial fraction of the total aerosol mass. It is possible that oligomers are widely present in atmospheric organic aerosols, formed through acid- or base-catalyzed heterogeneous reactions. In addition, as the seed particle acidity increases, larger oligomers are formed more abundantly in the SOA; consequently, the overall SOA yield also increases. This explicit effect of particle phase acidity on the composition and yield of SOA may have important climatic consequences and need to be considered in relevant models.

Introduction

Organic compounds are a major component of atmospheric aerosols and are important contributors to the climate forcing and human health effects of airborne particles (1). A significant fraction of atmospheric organic aerosols are formed through in-situ oxidation of precursor hydrocarbons in the gas phase followed by partitioning of low-volatility products into the aerosol phase (2). These are referred to as secondary organic aerosols (SOA). Recently, higher-molecular-weight species beyond the first-generation oxidation products have been identified in SOA (3-6). An increase in the yield of SOA formed on acidic seed particles has also been reported (3, 7, 8). In the current conceptual model for atmospheric formation of SOA (2), once the oxidation products are in the aerosol phase, no further chemical reaction is assumed to occur. However, with aerosol-phase reactions occurring as suggested by recent studies, the overall yield of aerosol from precursor oxidation would increase beyond that resulting from pure equilibrium partitioning. The consequence is that
the amount of SOA in the atmosphere may substantially exceed that predicted by current models used in global climate assessments (9).

Several fundamental questions arise. What is the increase in SOA yield in the presence of an acidic substrate for precursor hydrocarbons at or near ambient mixing ratios? Is an acidic substrate required for oligomer formation? What is the chemical nature of these oligomers and what reactions produce them? Is oligomer formation the primary cause for the increased yield of SOA formed on more acidic particles? And finally, is oligomer formation in SOA a ubiquitous phenomenon?

This work addresses these questions through an extensive series of dual-chamber laboratory experiments. We consider the ozonolysis of \(\alpha\)-pinene (mixing ratio from 12 to 135 ppb), one of the most common biogenic hydrocarbons, and of six cycloalkenes, i.e., cyclohexene, 1-methyl cyclopentene, cycloheptene, 1-methyl cyclohexene, cyclooctene, and terpinolene (mixing ratio from 25 to 300 ppb), serving as model compounds for many atmospheric hydrocarbons bearing similar molecular skeletons, in the absence or presence of seed particles of controlled acidity. We demonstrate and explain the explicit effect of particle-phase acidity on the amounts and composition of SOA formed. Moreover, we find that oligomers are present in each system studied regardless of the initial particle acidity, and speculate that oligomer formation is a ubiquitous phenomenon in ambient aerosols. These results have important implications for predicting the amounts and composition of SOA in the atmosphere.
Experimental Section

All experiments were carried out under dark conditions in Caltech’s dual 28 m³ teflon chambers. Seed solutions were first nebulized into the clean chamber to form seed particles (wet seeds for most α-pinene experiments and dry seeds for cycloalkene experiments). To examine the effect of seed particle acidity on SOA formation, we used two “nonacid” seeds, containing either MgSO₄ or (NH₄)₂SO₄, and two “acid” seeds, containing either [MgSO₄+H₂SO₄] or [(NH₄)₂SO₄+H₂SO₄]. The salt-only solutions were 0.03M each, and acidified solutions contained 0.03M salt and 0.05M H₂SO₄. Cyclohexane was then injected to act as a hydroxyl radical scavenger, followed by hydrocarbon and ozone injection. Relative humidity and temperature were controlled (e.g., at 55% and 20 ºC for the α-pinene ozonolysis experiments). Aerosol number concentration, size distribution, hygroscopic growth, and hydrocarbon mixing ratio were continuously measured. Aerosol loss to the chamber wall was accounted for in data analysis.

In each pair of “nonacid” and “acid” experiments, filter samples (47mm teflo filters) were collected at nearly the same elapsed time (5~7 h) from the onset of reaction for nearly the same duration (1~2 h). Each filter was extracted in HPLC-grade methanol by sonication. The extract was then blown dry under a gentle N₂ stream and reconstituted by an acetic acid solution/methanol mixed solvent. A portion of the filter extract was analyzed by a Hewlett-Packard 1100 series Liquid Chromatography – Mass Spectrometry (LC-MS) system to identify and quantify low-molecular-weight species (MW < 250 Da). Another portion of the filter extract was analyzed by an LCQ classic ion trap mass spectrometer (IT-MS) to identify SOA components with molecular weights ranging from 80 to 1600 Da.
Both negative and positive (Na\(^+\) added) ion modes of the IT-MS detection were carried out, so that compounds of different acidity and polarity could be detected. In addition, some specific ions were isolated and further fragmented by collision-induced dissociation to produce so-called tandem MS. Most of the MS/MS in this work were produced under the negative ion mode, since the isolated ions had less interference and the backgrounds were cleaner than the positive ion mode.

We carried out each pair of “nonacid” and “acid” experiments in the two chambers in parallel, with all other conditions held identical. Thermodynamic calculations (10) show that the four seed particles, once stabilized in the chamber, had distinct pH values. For example, at the RH = 55% for \(\alpha\)-pinene ozonolysis experiments, the pH values for [MgSO\(_4\)-only] seed and [MgSO\(_4\)+H\(_2\)SO\(_4\)] seed were 6.5 and -0.3, respectively. The pH values for [(NH\(_4\))\(_2\)SO\(_4\)-only] seed and [(NH\(_4\))\(_2\)SO\(_4\)+H\(_2\)SO\(_4\)] seed were 4.6 and 2.4, respectively. The acidity increase from the “nonacid” to the “acid” seed in the MgSO\(_4\) case exceeded that in the (NH\(_4\))\(_2\)SO\(_4\) case by 4.6 pH units.

Results and Discussion

Figure 1 shows the relative yield difference (RYD) of SOA between the acid and nonacid cases for seven pairs of \(\alpha\)-pinene ozonolysis experiments on MgSO\(_4\) particles, two pairs on (NH\(_4\))\(_2\)SO\(_4\) particles, as well as two pairs of terpinolene ozonolysis experiments on MgSO\(_4\) particles. Within the range of \(\alpha\)-pinene mixing ratios studied, the SOA yield increases by about 10 ~ 40% on the acidic MgSO\(_4\) seed over the MgSO\(_4\)-only seed. The linear decrease in the RYD with increasing initial \(\alpha\)-pinene may be related to the decreasing amount of
H$_2$SO$_4$ in the particles. Initial SOA growth rates for the acid and nonacid cases at two α-pinene mixing ratios are shown by the two insets in Figure 1. By comparison, the SOA yield only increases by about 5% on acidic (NH$_4$)$_2$SO$_4$ particles over pure (NH$_4$)$_2$SO$_4$ particles. This is likely due to the markedly smaller acidity difference between the nonacid and acid particles of (NH$_4$)$_2$SO$_4$, as compared with MgSO$_4$.

The SOA composition difference between nonacid and acid cases is consistent with the overall yield difference. Our LC-MS analyses have identified a number of low-molecular-weight (low-MW) species (MW < 250), containing carbonyl, hydroxyl, and carboxyl groups, in the SOA from the ozonolysis of cycloalkenes and α-pinene, consistent with other studies (11 – 14). In the C$_5$ – C$_8$ cycloalkene-ozone systems, diacids, carbonyl acids, hydroxylated diacids, and diacid alkyl esters are consistently the most abundant low-MW SOA components. In the α-pinene-ozone system, regardless of the seed, cis-pinic acid, norpinic acid and hydroxy pinonic acid, detected with m/z of 185, 171 and 199 (in the negative ion mode), respectively, are the most abundant low-MW SOA components (all may have isomers present; see Supporting Information, Figure S1.) These three acidic species are also consistently detected by the ion trap mass spectrometry (IT-MS) in the negative ion mode (see Supporting Information, Figure S2). However, negative ions with m/z of 329, 343, 357, 371 and 385 are also detected by the IT-MS (see Supporting Information, Figure S2). The presence of these high-MW species is confirmed by the detection of ions with m/z of 353, 367, 381, 395 and 409 in the positive ion mode IT-MS, as shown in Figure 2(a). These ions are pseudomolecular ions [M+23]$^+$, formed by the addition of a Na$^+$ to the neutral molecules. A broad range of compounds can be detected as
their Na⁺ adducts in the positive ion mode IT-MS, thus better reflecting the overall composition of SOA. Figure 2(a) illustrates that in the SOA formed on the nearly neutral MgSO₄ seed, small oligomers (MW from 250 to 450) are the most abundant species. These species are separated regularly by mass units such as 14, 16, 18, and 30, which is characteristic of a copolymer system (15), indicating the difference of CH₂, O, H₂O groups, or a combination of them, among monomers and oligomers. It is striking that these low-MW species (MW < 250) comprise only a minor fraction of the total SOA mass, assuming they have similar response factors to oligomers on the MS detector. In previous studies, high-MW species may have decomposed during sample preparation or instrumental analyses (such as in a GC oven) (16), resulting in a possible overestimation of low-MW species. The ion trap MS employs an electrospray ionization source that better preserves molecular integrity by soft ionization (17).

When the seed becomes much more acidic (MgSO₄-H₂SO₄), as shown in Figure 2(b), the resultant SOA comprises many more large oligomers (MW from 450 to 950), most of which have higher ion intensities; thus, mass concentrations of these species exceed, by at least a factor of 2, those in the SOA formed on MgSO₄-only seed. Some even larger oligomers (MW from 950 to 1600) are now detected (with signal-to-noise ratios larger than 3) in the SOA formed on the acidic seed. On the other hand, the mass distribution of small oligomers remains roughly in the same pattern, with a slight decrease in ion intensities. Similar difference in SOA composition between nonacid and acid MgSO₄ seeds is observed in all other six pairs of experiments on the α-pinene system. Our hygroscopicity measurements (18) show that these SOA, at the time of filter collection, contain
approximately 10 – 20 % water; thus, the increased types and amounts of oligomers formed on the more acidic seed are the primary cause for the increased SOA yield (see Figure 1).

By comparison, the composition difference between SOA formed on (NH₄)₂SO₄-only seed and (NH₄)₂SO₄-H₂SO₄ seed is less pronounced than on the corresponding MgSO₄ seeds. As shown in Figures 2(c) and 2(d), there is only a modest increase in the types and amounts of small oligomers in the SOA formed on the more acidic seed, and there is essentially no change in the mass distribution of the large oligomers. This is consistent with the very small yield increase observed. The composition and yield differences between the two sets of nonacid vs. acid seeds clearly demonstrate that seed acidity has a direct impact on the composition and amounts of SOA formed.

That the higher-MW species (MW > 250) shown in Figure 2 are indeed oligomers is confirmed from the tandem MS of these ions. Figure 3 shows the MS/MS (negative mode) of 357 and 245 ions in SOA from the ozonolysis of α-pinene and 1-methyl cyclopentene, respectively. The molecular structures shown alongside the MS/MS explain all major and some minor fragments. Their corresponding monomers are norpinonic acid, C₅, C₆ carbonyl acids and C₅ diacid, all first-generation oxidation products. There are at least three possible structures for the 245 ion, illustrating the complexity of the oligomeric system in the SOA. Overall, our MS/MS results confirm that oligomers originate from low-MW SOA species in all the systems studied. For the α-pinene ozonolysis system, with the monomers having MW centered about 180 Da (J3), the small oligomers (MW from 250 to 450) are probably dimers, whereas larger oligomers (MW from 450 to 950) are likely
trimers, tetramers, and pentamers. Based on the structures of oligomers and corresponding monomers, we propose three possible reaction pathways in the aerosol phase: aldol addition between carbonyls, gem-diol reaction between carbonyls with the participation of a water molecule, and acid dehydration with the loss of a water molecule. All three reactions require acid or base catalysis. Detailed reaction mechanisms are well established in organic chemistry literature. We note that since many of the low-MW SOA species have functional groups in branched positions, the oligomers eventually formed may contain both straight-chain and cross-linked sections.

The SOA composition difference between nonacid and acid cases actually reflects the kinetics of these acid-catalyzed reactions. As seed acidity increases, oligomer formation accelerates, and larger oligomers form within the same experimental time frame than form on less acidic seed. The slight decrease in the ion intensities of small oligomers, as shown in Figures 2(a) and 2(b), actually may reflect their transformation into larger oligomers, at roughly 5 h from the onset of ozonolysis. In similar experiments on dry (NH₄)₂SO₄ seed, abundant small and large oligomers are detected in SOA from α-pinene ozonolysis, even without H₂SO₄ in the seed, as shown in Figure 4. Apparently, the higher acidity of the dry seed, as compared with the wet seed, facilitates faster formation of large oligomers.

Despite the sensitivity of SOA formation to the particle phase acidity, we find that oligomers (MW from 250 up to 1600) are present in SOA in all the systems studied regardless of seed pH. Importantly, in the α-pinene ozonolysis system, similar types of
oligomers are present in SOA both in the presence and absence of pre-existing particles (see Figure 5 for the latter case). This suggests that organic acids produced from the gas-phase hydrocarbon oxidation itself may actually provide necessary acidity for catalytic reactions. Since atmospheric aerosols tend to be somewhat acidic, we speculate that oligomers are widely present in atmospheric organic aerosols, and they may comprise a substantial fraction of the total aerosol mass. Since the proposed heterogeneous reactions take place readily under base catalysis as well, the ubiquity of oligomers in ambient aerosols appears all the more likely.

Acknowledgements

This work was supported by U.S. Department of Energy Biological and Environmental Research Program DE-FG03-01ER63099, Electric Power Research Institute, and U.S. Environmental Protection Agency RD-83107501-0.

Supporting Information Available

Three figures. This material is available free of charge via the Internet at http://pubs.acs.org.

Literature Cited

(1) IPCC. Climate change: contribution of working group I to the third assessment report of the intergovernmental panel on climate change, 2001, Cambridge Univ. Press.

Figure Captions

Figure 1. The relative yield difference (RYD) of SOA between the acid and nonacid cases for seven pairs of α-pinene ozonolysis experiments on MgSO₄ seeds, two pairs on (NH₄)₂SO₄ seeds, as well as two pairs of terpinolene ozonolysis experiments on MgSO₄ seeds. The absolute SOA yield is defined as the mass of SOA produced relative to the mass of hydrocarbon consumed. The RYD is defined as the difference in the absolute SOA yield between the acid and nonacid cases normalized to the nonacid-case yield. Corresponding to the seven α-pinene mixing ratios shown (i.e., 12ppb, 25ppb, 48ppb, 52ppb, 96ppb, 120ppb and 135ppb), the absolute SOA yields are 0.30, 0.32, 0.35, 0.38, 0.46, 0.52 and 0.53, respectively, for the nonacid cases, and are 0.41, 0.43, 0.44, 0.47, 0.53, 0.57, 0.57, respectively, for the acid cases.

Figure 2. Ion trap mass spectrum (+ ion mode) of the extract of SOA from the ozonolysis of (a). 120 ppb α-pinene on MgSO₄-only seed (RH = 55%, background ion intensity almost always ≤ 800000). (b). 120 ppb α-pinene on MgSO₄-H₂SO₄ seed. Other experimental conditions are identical to (a). (c). 72 ppb -pinene on (NH₄)₂SO₄-only seed. Other experimental conditions are identical to (a). (d). 72 ppb -pinene on (NH₄)₂SO₄-H₂SO₄ seed. Other experimental conditions are identical to (a).

Figure 3. MS/MS (- ion mode) of (a). 357 ion in the SOA from the same α-pinene ozonolysis experiment as in Figure 2(a), its likely structure and fragmentation (hydrogen rearrangement and dehydrogenation not shown), and the structure of the monomer. See
Supporting Information, Figure S3 for the detailed structures of fragment ions. (b). 245 ion in the SOA from 1-methyl cyclopentene ozonolysis, its likely structures and fragmentation, and the structures of the monomers.

Figure 4. Ion trap mass spectrum (+ ion mode) of the extract of SOA from the ozonolysis of 180ppb α-pinene in the presence of dry (NH₄)₂SO₄-only seed. Large amounts of both small and large oligomers are present in this SOA.

Figure 5. Ion trap mass spectrum (+ ion mode) of the extract of SOA from the ozonolysis of 50ppb α-pinene in the absence of seed particles. This IT-MS is similar to that of the SOA from its parallel ozonolysis experiment in the presence of MgSO₄ seed particles, and is also similar to that of the SOA from other α-pinene ozonolysis experiments, such as the one shown in **Figure 2(a)**.
Figure 1.
Figure 2.
Figure 2.
Figure 2.
Figure 2.
Gem-diol reaction of monomers: Norpinonic acid

Figure 3.
Figure 3.

(b)

Acid dehydration & aldol addition of monomers: C₅, C₆ carbonyl acids and C₅ diacid

\[\text{Relative abundance} \]
Figure 4.
Figure 5.
Supporting Information - Supporting Figure Captions

Figure S1. The extracted ion chromatograms of 185, 171, 199, and 183 ions detected by the LC-MS in the SOA from the same -pinene ozonolysis experiment as shown in Figures 2(a) and 3(a). 185 and 183 are identified as cis-pinic acid and cis-pinonic acid, respectively, by comparing with standard compounds. 171 and 199 are tentatively identified as norpinic acid and hydroxy pinonic acid, respectively, although isomers are likely present. The molecular structures of these four compounds are drawn alongside the corresponding ion chromatograms.

Figure S2. Ion trap mass spectrum (- ion mode) of the extract of SOA from the same -pinene ozonolysis experiment as shown in Figures 2(a) and 3(a). In all SOA samples from -pinene ozonolysis, 185, 171 and 199 are detected as the most abundant low-MW species, by both the IT-MS and LC-MS (see text). The identified (185) and tentatively identified (171, 199) structures are shown next to their corresponding ions.

Figure S3. The likely structures of 313, 171 and 185 fragment ions in Figure 3(a). It is worth noting that our Figure 3(a) is similar to Figure 9 in Hoffmann et al., *J. Geophys. Res.* 103, 25,569 – 25,578 (1998), where they used atmospheric pressure chemical ionization (APCI)-MS to analyze SOA samples from -pinene ozonolysis. Besides the well-known inherent artifact with APCI technique of forming adducts and clusters during analysis, a fundamental difference is Hoffmann et al. interpreted the 357 ion as a molecular cluster formed through intermolecular forces (i.e., H-bonding) between acids, whereas we propose the 357 ion as a true dimer formed through covalent bonds via gem-diol reaction. Covalent bonding is much stronger than H-bonding, therefore making the formation and presence of the dimers in SOA, depicted in our Figure 3, more feasible.
Figure S1.
Figure S2.

- **185**: cis-pinic acid
- **171**: norpinic acid
- **199**: hydroxy pinonic acid

Small Oligomers $m/z = 329, 343, 357, 371, 385$
Figure S3.