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Abstract

Heterogeneous oxidation of aerosols composed of pure oleic acid (C;sH340,, an unsaturated fatty
acid commonly foundin continental and marine aerosol)by gas-phase O3 is known to increase
aerosol hygroscopicity and activity as Cloud Condensation Nuclei (CCN). Whether this trend is
preserved when the oleic acid is internally mixed with other electrolytes is unknown and
addressed in this study. We quantify the CCN activity of sodium salt aerosols (NaCl, Na>SOx)
internally mixed with sodium oleate (SO) and oleic acid (OA). We find that particles containing
roughly one monolayer of SO/OA show similar CCN activity to pure salt particles, whereas a
tenfold increase in organicconcentration slightly depresses CCN activity. O3 oxidation of these
multicomponent aerosols has little effect on the critical diameter for CCN activation for
unacidifiedparticles at all conditions studied, and the activation kinetics of the CCN are similar
in each case to those of pure salts.SO-containing particles which are acidified to atmospherically
relevant pH before analysis in order to form oleic acid, however, show depressed CCN activity
upon oxidation. This effect is more pronounced at higher organicconcentrations.The behavior
after oxidation is consistent with the disappearance of the organic surface film, supported by
Kohler Theory Analysis (KTA).k-Kohler calculations show a small decrease in hygroscopicity
after oxidation.The important implication of this finding is that oxidative aging may not always

enhance the hygroscopicity of internally mixed inorganic-organic aerosols.
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1. Introduction

Surface-active molecules contain both hydrophilic and hydrophobic moieties;therefore, they tend
to partition at the gas-liquid interface of aqueous solutions. Given that both water and surface-
active organics are ubiquitous in tropospheric aerosols,organic films have long been
hypothesizedto exist on aerosol surfaces[Ellison et al., 1999; Gill et al., 1983] with potentially
important consequences for atmospheric chemistry and climate. Organic films may affect the
ability of the aerosol to act as CCN[A4ndrews and Larson, 1993; Asa-Awuku et al., 2008; Chuang
et al., 1997; Ervens et al., 2005; Facchini et al., 1999; Novakov and Penner, 1993; Shulman et
al., 1996], ice nuclei[Cziczo et al., 2004; DeMott et al., 2003; Kdircher and Koop, 2005],and alter
aerosoloptical properties|Bond and Bergstrom, 2006; Dinar et al., 2008; Kanakidou et al., 2005;
Malm and Kreidenweis, 1997; Mircea et al., 2005]. These films may act as a barrier to mass
transport across the gas-liquid interface, with implications for aerosol heterogeneous
chemistry[Folkers et al., 2003; McNeill et al., 2006; Thornton and Abbatt, 2005] and the rate of
water uptake[Asa-Awuku et al., 2009; Cruz and Pandis, 2000; Demou et al., 2003; Garland et
al., 2005; Gill et al., 1983; Hemming and Seinfeld, 2001; Nenes et al., 2002; Rubel and Gentry,
1984; Rudich et al., 2000; Saxena and Hildemann, 1997]. Surface-active organics can impact
CCN activity by lowering aerosol surface tension, thus affecting the Kelvin term of the Kohler
equation[Shulman et al., 1996], but they can also affect the Raoult term by altering ns, the
number of moles of solute, especiallywhen surface-bulk partitioning of solute is taken into

account[Kokkola et al., 2006; Sorjamaa et al., 2004; Sorjamaa and Laaksonen, 2006].

Oleic acid (C;3H340,), a surface-active monounsaturated long-chain fatty acid, has been detected

in urban, rural and marine aerosols[ Cheng and Li, 2005; Graham et al., 2003; Kawamura et al.,
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2003; Limbeck and Puxbaum, 1999; Robinson et al., 2006; Schauer et al., 1996, 2002; Simoneit
et al., 2004; Stephanou and Stratigakis, 1993; Yue and Fraser, 2004]. It is the most common
fatty acid found in plant membranes, is prevalent in many cooking oils, and it is used as a marker
for meat cooking aerosols[Rogge et al., 1991].0zonolysis of oleic acid yields nonanal, nonanoic
acid, 9-oxononanoic acid, and azelaic acid under humid conditions, and high molecular weight
products under dry conditions[Hearn et al., 2005; Hearn and Smith, 2004; Katrib et al., 2005a;
MecNeill et al., 2007; Rudich et al., 2007; Smith et al., 2002; Thornberry and Abbatt, 2004; Vesna
et al., 2008, 2009; Zahardis et al., 2005, 2006a; Zahardis and Petrucci, 2007].Under
atmospherically-relevant conditions, nonanal primarily partitions to the gas phase, while the
other products remain in the condensed phase. Dueto the importance of oleic acid as a
tracerspecies[Rogge et al., 1991] and its relatively well-understood O; oxidation mechanism,
many studies of the kinetics of oleicacid oxidation have been performed on systems of varying
morphology, including pure oleic acid particles[Broekhuizen et al., 2004b; Hearn et al., 2005;
Hearn and Smith, 2004; Hung et al., 2005; Katrib et al., 2005a; Lee and Chan, 2007; Morris et
al., 2002; Pfrang et al., 2010; Reynolds et al., 2006; Sage et al., 2009; Smith et al., 2002; Vesna
et al., 2008; Zahardis et al., 2005, 2006a, 2006b; Ziemann, 2005], mixed organic particles[Hearn
and Smith, 2005; Hung and Ariya, 2007; Nash et al., 2005], films on polystyrene beads[Katrib et
al., 2004, 2005b], films on aqueous sea salt aerosol[King et al., 2004], films in coated wall flow
tube studies[de Gouw and Lovejoy, 1998; Knopf et al., 2005; Moise and Rudich, 2000, 2002;

Thornberry and Abbatt, 2004], and films on crystal surfaces[4sad et al., 2004].

Pure organic aerosols are generally less hygroscopic and CCN active than deliquescent inorganic

particles (such as NaCl or (NH4),SOy)[Petters and Kreidenweis, 2007]. Oxidation of organic

4
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aerosol material can increase the number of polar, hydrophilic functional groups present in the
condensed phase, potentially leading to increased hygroscopicity and CCN activity. Oleic acid
particles have been used extensively as a model system to study the effect of oxidation on the
CCN activity of organic particles.Kumar et al.[2003] created pure oleic acid particles through
homogenous nucleation and observed no activation for particle sizes up to 140 nm and < 0.6%
supersaturation (SS). Abbatt et al.[2005] studied the CCN activity of ammonium sulfate aerosols
coated with oleic acid and found that particles with thin (~2.5-5 nm) coatings of oleic acid were
not CCN active, but that CCN activity increased when the organic mole fraction increased. This
somewhat counterintuitive result was attributed to the fact that the particle diameter increased
with increasing organic mass fraction, reducing the magnitude of the Kelvin effect.Broekhuizen
et al.[2004a] found that oxidation products of oleic acid(nonanoic acid and azelaic acid) were
highly CCN active. In a separate study, they found that CCN activity was enhanced after
oxidation for both pure oleic acid particles and particles formed by atomizing a solution of oleic
acid in methanol[Broekhuizen et al., 2004b]. The enhancement in CCN activity occurred at very
high ozone exposures (~0.4 atms) for pure oleic acid particles, and at atmospherically relevant
exposures (<1x10™atms) for the oleic acid/methanol particles.Shilling et al.[2007] determined
that 200 nm mobility diameter oleic acid particles, generated through either homogenous
nucleation or atomization, became CCN active at 0.66(+0.06)%supersaturation after exposure to

greater than 0.01 atmsOs.

Despite its atmospheric relevance, the response of mixed inorganic/oleic acid particles to
oxidation has not been considered in published CCN activity studies. This is an important

omission, because the acid almost always coexists in the atmosphere with inorganic salts. Little
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is known about the interactions of oleic acid and its oxidation products with water in a high ionic
strength environment. These issues are addressed in this study. An aerosol flow tube reactor
coupled with a continuous flowcloud condensation nucleus counter is used to examine the effect
of ozone oxidation on the CCN activity of aerosol particles containing mixtures of sodium oleate

(SO)/oleic acid (OA) with inorganic salts (NaCl or Na,;SOy).

2. Methods

2.1. Experimental.Sodium oleate (C;3H330, Na"), the sodium salt of oleic acid (C;sH340,), has
much higher solubility in water than oleic acid. It was used in these experiments to simplify the
preparation of aerosols containing a small, controlled amount of organic material. When the pH
of aerosols containing SO is lowered to atmospherically relevant values via acidification (see

details below), the oleateion converts to oleic acid according to:

Ci3H330, Na’ + H;0" < C3H340, + H,O + Na* (1)

For the experiments performed, the setup is shown in Figure 1. Polydisperse submicron aerosols
were generated using a constant output atomizer (TSI 3076). Atomizer solutions were prepared
using Millipore water with 0.001 M or 0.01 M SO (Sigma Aldrich) and 0.05 M NaCl. This
technique, using 0.001 M SO, was used by McNeill et al.[2007]to generate aerosols with an
inferred population-averaged oleate surface coverage of ~92%. The atomizer output was
combined with a humidified N, dilution stream. This combined stream was sent through an
aerosol flow tube reactor (7.5 cm ID, 55 cm length). Relative humidity was measured at the
outlet of the flow tube reactor using a commercial hygrometer (Vaisala) and was maintained

between 62-67%. Ozone was generated by flowing O, in an N carrier stream through a
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photoreactor containing a Hg lamp (Jelight, Inc.). This stream entered the flow tube reactor
through a moveable stainless steel injector tube. Ozone concentrations of 0.2andl ppm were
used. Total flow through the reactor was 0.8 LPM, with a reaction time of 3minutes.Processed
aerosols in the reactor effluent flowed through a diffusion drier before being characterized by a
Differential Mobility Analyzer (DMA, TSI 3080), a Condensation Particle Counter (CPC, TSI
3775) and a Continuous Flow Streamwise Thermal Gradient CCNChamber (CFSTGC, Droplet
Measurement Technologies)[Lance et al., 2006; Roberts and Nenes, 2005]. Aerosols were size-
selected using the DMA, and the DMA output flow was split between the CPC and the CFSTGC.
0.8 LPM entered the DMA and split 0.5 LPM to the CFSTGC, 0.3 LPM to the CPC. Scanning
Mobility CCN Analysis[Moore et al., 2010] was used to determine the size-resolved CCN
activity of the aerosol, where the voltage applied to the DMA is scanned so that a complete
activation curve (fraction of classified particles acting as CCN) is obtained every 2 minutes. The
average total aerosol number concentration in the reactor output was 9.6 + 2.0x10*cm™. The size
distribution of NaCl particles had a geometric surface area-weighted mean particle diameter of
202 + 7nm with a geometric standard deviation of 1.59. Na,SO4 particles had a particle diameter

of 194 + 5 nm with a geometric standard deviation of 1.63.

A second series of experiments was performed in order to test the sensitivity of CCN activity in
the mixed inorganic-SO aerosols to particle pH because atmospheric aerosols are typically
acidic[Keene et al., 2004; Zhang et al., 2007]. Under acidic conditions oleateexists in its un-
ionized, lower-solubility form, oleic acid, according to Reaction 1. The atomizer output was
passed over an H,SOj4 reservoir before combining with humidified N, and entering the flow tube

reactor. Assuming an uptake coefficient y=0.5[ten Brink, 1998], an aerosol surface area of S,=6.2

7
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+1.4x10” em’cm™, geometric volume-weighted mean diameter D,=232 nm, and a residence time
of ~0.8 s in the H,SO4 reservoir, we estimate that the particles are acidified from an initial pH=8
to pH~0.4.The calculation methodology is shown in the supplementary material. Giventhat
thepKa of oleic acid = 5.02 [Riddick et al., 1986] and pH = 0.4, the ratio of oleate to non-
dissociated oleic acid in the particles ([C;sH330,]/[CisH340,]) = 2.3988 x107 , that is,nearly all
of the organic will be present as oleic acid under these conditions.For the acidification

experiments the total aerosol number concentration was 9.9 + 1.4 x10* cm™.

The following control experiments were also performed: “pure” sodium oleate particles were
generated by atomizing an aqueous solution of 0.001 M SO. In order to investigate possible
variations in pH buffering by differentcounterions,experiments were also performed using
aerosols atomized from solutions containing 0.001 M or 0.01 M SO and 0.06 M Na,;SO4.Finally,
pure inorganic aerosols prepared from solutions containing 0.05 M NaClor 0.06 M Na,SO4 were
oxidized with 1 ppm O; in the flow tube reactor, showing no significant deviation in CCN

activity from the pure salt calibrations without oxidation.

2.2 Data Analysis. Kohler Theory provides the framework used to describe cloud droplet
formation from activation of soluble particles [Cruz and Pandis, 1997; Gerber et al., 1977; Katz
and Kocmond, 1973]. A single-parameter expression of Kdohler theory, referred to ask-Kdohler
theory, was introduced by Petters and Kreidenweis[2007]to account for the effect of variations in
solute hygroscopicity on CCN activity. Values of the hygroscopicity factor, x, of 0.5<k<1.4 are

typical for inorganic particles in the atmosphere. For hygroscopic organic particles, 0.01<x<0.5,
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whereas for non-hygroscopic materials (including highly hydrophobic organics)ikapproaches

zero.kis derived from the CCN activity data as follows[Petters and Kreidenweis, 2007],

4 4°
Ke——— 2
27d’ In> S @
where 4 = % (3)
P

Here, d; is the critical dry activation diameter of the particle[m] (determined from CCN
activation experiments), Sis the water saturation ratio (S= 1 + 0.01S,, where S, is critical
supersaturation[%]), oy, 1s the surface tension of water at the surface/air interface at the median
temperature of the CFSTGCcolumn, M,, is the molecular weight of water, R is the universal gas

constant, 7 isthe mediantemperature of the CFSTGCcolumn [K], and p,, is the density of water.

Kohler Theory Analysis (KTA) was also used to infer the surface tension of the mixed aerosol

before and after oxidation[Padro et al., 2007]. The following equations were used[Padro et al.,

2007]:
M gL
P, aso(M.Y( 1Y) @
’ | (j Gs/a3a)_2_ pi giUi
27\ p, RT M,
m;

where ¢, = - &)

m,_m

—t4 0

pj po

Here, M,, M,p,and prefer to the average molecular weight and density of the organic and
inorganic components of the aerosol, while v, andv; are effective van’t Hoff factors,e,ande;are

volume fractions, and m,, m; are the mass fractions of the organic and inorganic components,
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respectively. The fitted CCN activity factor, w, is determined from the log-log plots of
Scversusdy, fit to the equation[4sa-Awuku et al., 2010],

S, =wd,”" (6)

kandw are related by @ = (44> / 271()% .

3. Results
The results of our CFSTGC measurements for the SO/OA/NaCl and SO/OA/Na,SO4 systems are

shown in Figures 2-5. A complete list of calculated k values (derived from egs. (2) and (3)) and

power law exponents for the CCN activity data is available in the supplementary material.

3.1 SO/NaCl. As expected, pure SO/H,0O aerosols are much less CCN active than NaCl aerosols
(Figure S1), withk= 0.12 £+ 0.004. As shown in Figures 2a and S1, the CCN activity of mixed
SO/NaCl particles generated from 0.001 M SO/0.05 M NacCl solutions (k= 1.19 £ 0.03) is similar
to that of pure NaCl particles. The mixed particles with higher SOcontent show intermediate
CCN activity(k= 0.87 £ 0.06) compared to particles with lower SO content and pure SO/H,O
particles. The mixed SO/NaCl aerosols exhibit similar wet activated diameter profiles to NaCl
particles (Figure 2b), indicating that the presence of oleate does not retard the activation kinetics
of the aerosol on the timescale of the CCN measurements|[Engelhart et al., 2008; Moore et al.,
2008]. Furthermore, for all these systems the critical supersaturation shows a power law
dependence of S, ~ d; "% suggesting that the CCN activity of these particles is described
fairly well by Kohler theory, with no significant solubility limitations or size-dependent surface-
bulk partitioning effects. For a system that is perfectly described by Kohler Theory, we expect
the relationship to follow S.~ d,;/'~, as shown in eq. (6)[Padro et al., 2007].
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CCN activity did not significantly change upon exposure to Os for theunacidifiedmixed SO/NaCl
aerosols studied. Critical dry diameters changedby ~0.5% for the particles generated from 0.001
M S0/0.05 M NacCl solutions and ~1.6% for the particles generated from 0.01 M SO/0.05 M
NaCl solutions (Figure 2a); this leads to a changeof particle critical supersaturation by ~1% for
the former and ~3% for the latter. The change in CCN activity due to oxidation effectively falls
within the standard deviation of the non-oxidized data, showing relatively little effect of
oxidation to unacidifiedmixed SO/NaCl particles. Calculatedkvalues after oxidation for all
SO/NaCl aerosols were similar to the k values prior to oxidation;xk=1.14 = 0.02 for 0.001 M
S0O/0.05 M NaCl and x=0.83 £ 0.04 for 0.01 M SO/0.05 M NaCl. The change in CCN activity
wasnot dependent on the concentration of ozone used within the range studied here (0.2 — 1
ppm). The wet diameter profiles after oxidation are nearly identical to the non-oxidized SO/NaCl
particle wet diameters. This suggests that surface films, if present, do not retard CCN activation

kinetics and growth.

3.2 SO/Na,SO,. Because oleate oxidation generates organic acid products, it is possible that the
particle pH changes during oxidation, with implications forfatty acid solubility[Cistola et al.,
1988]. In the unacidifiedSO/NaCl system, the formation of organic acidoxidation products may
result in the formation, and possible subsequent volatilization, of HCI, due to its high vapor
pressure. The net pH change is expected to differ in the SO/Na,SO,4 system. The CCN activity

data for the SO/Na,SO4 experiments are shown in Figure 3.
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The CCN activity of the SO/Na,SOy particles follows trends similar to what we observed for the
SO/NaCl particles. The CCN activity of the particles generated from 0.001 M S0/0.06 M
Na,SOy solutions(k= 0.71 + 0.04) and 0.01 M SO/0.06 M Na,SOy solutions (k= 0.68 £+ 0.03) is
roughly similar to that of pure Na,SO4 particles. The CCN activity changes littleupon oxidation,
and the resulting hygroscopic parameters (k= 0.71+ 0.02 and = 0.67 + 0.03, respectively) are
similar to the non-oxidized SO/Na,SO, particles, analogous to our observations for the
SO/NaClsystem. The wet diameter profiles are again very similar both before and after

oxidation, suggesting that there is no kinetic limitation to water uptake.

3.3 Acidified experiments: OA/NaCland Na,SO,. As an additional test of the effect of pH on
our observations of CCN activity for the SO/NaCl and SO/Na,SO;, systems, we performed a set
of experiments in which the atomized mixed particles were exposed to gas-phase H,SO,4 before
oxidation. The goal of these experiments was to create a particle with a low pH typical of that of
atmospheric aerosols, conditions under which sodium oleate and the organic acid oxidation
products are in their un-ionized, lower-solubility forms (cf. Reaction (1)). As demonstrated in
Section 2, nearly all of the SO will be present as oleic acid under these conditions.The results of

these experiments are shown in Figure 4 and 5.

The CCN activity of acidified 0.001 M SO/0.05 M NacCl (k= 1.14 £ 0.05) and 0.01 M SO/0.05 M
NaCl (k= 0.97 + 0.08) decreased after oxidation (k= 1.07 = 0.05 and 0.79 £+ 0.02, respectively),

more noticeably at higher instrument supersaturations and SO concentrations (Figure 4 and

inset). The wet activated diameters do not show any kinetic limitations to water uptake.
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Similarly, the acidified SO/Na,SO4 data shows similar CCN activity behavior to the acidified
SO/NaCl particles (Figure 5). The hygroscopicity values for both 0.001 M and 0.01 M SO/0.06
M Na,SO, decrease after oxidation, and both follow the power law dependence expected from

Kohler theory (where S, ~ dd'l'%io'oos and S, ~ dd'l'”io'ooz, respectively).

3.4 Kohler Theory Analysis.The parameters and results of the KTA calculations can be seen in
Tables 1-3. The initial in-particle concentrations of oleate and the inorganic salt were calculated
followingMcNeill et al.[2007]. After oxidation, we assume the oleate is completely oxidized to
form nonanal and azelaic, nonanoic, and 9-oxononanoic acids. The product yields reported
byVesna et al.[2009] were used. The density of 9-oxononanoic acid is unknown and was
assumed to be 1 g cm™. The inorganic effective van’t Hoff parameter (u;), T, the fitted CCN
activity factor (w), and p,, all varied with varying S. and d;.To account for dissociation of the
organics, U, = 1 and 2 were tested, but the results for both salts at varying ozone concentrations,

regardless of the v, used,were the same to within 3%; the data for v, = 2 is shown.

The results suggest that the surface tension of the aerosols increases slightly after oxidation,
which is consistent with the breakup of the oleate monolayer (we have measured the surface
tension of bulk solutions saturated in NaCl and SOusing pendant drop tensiometry to be 44.4 +
0.8dyn cm™).The calculated surface tension values after oxidationfall between 64-75dyn cm™,
slightly less thanthe surface tension of saturated NaCl and Na,SO4 solutions| Washburn,

2003].Vesna et al.[2009] found thata large portion of the aerosol organic mass after oleic acid

oxidation consisted of unidentified products (UP). Including these products inour KTA
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calculations (assuming an average molar mass of 500 g mol'anddensity of 1.4 g cm™,[ T urpin
and Lim, 2001]), gave very similar surface tension results compared to when only the 4 main
oxidation species are considered. Therefore, the single-phase approximationrepresents our

system well.

4. Discussion

The particles generated using 0.001 M SOatomizer solutions were designed such that the
particles with the surface-area weighted average diameter would be covered with approximately
1 monolayer of oleate/OA at 65% RH. Following McNeill et al.[2006], we estimated the

organicfractional coverage of the total available surface area of our aerosol population by,

SO,
- ZN (7

1

C

i

wherefand N; are the fractional surface coverage of the aerosol and the number density in the
DMA size bin i,and ®is the overall fractional surface coverage. Assuming three things: that all
the organic partitions to the surface until saturated coverage is reached,that it is equally
distributed across the aerosol population in constant proportion to either NaCl or Na,SOs, and an
oleatefootprint of 48 A*[Langmuir, 1917], we find that for the particles generated using 0.001 M
S0O/0.05 M NaCl or 0.001 M SO/0.06 M Na,SO,4 atomizer solutions, ®<0.83 (83% overall
surface coverage) and ©<1.01 (100%), respectively. This calculation also implies that smaller
particleswith larger surfacearea-to-volume ratios will not contain enough oleate for full
monolayer coverage, while thelarger particles will have complete monolayer coverage.There is

indirect evidence of monolayer formation at similar conditions from N,Os uptake experiments by
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MecNeill et al.[2007]. In addition, McNeill et al.[2007] analyzed SO/NaCl particles formed using
this techniqueby SEM-EDAX,which showed the existence of uniform coatings of SO on the
particles.Using kinetic data fromMcNeill et al.[2007], we calculate the extent of oxidation in
particles with lower SO content to be76-100%, varying with Oz concentration. The reacto-
diffusive length in the OA-O; system is ~20 nm, so for particles with higher SO content, the
kinetic model of Smith et al. [2002], for reactions occurring in a near-surface layer of a pure
oleic acid particle, can be applied. Using their kinetic model and parameters, we calculate ~100%

oxidation.

Several studies on bulk systems have shown that when an oleic acid monolayer at the air-
aqueous interface is exposed to ozone, the organic film breaks down, as evidenced by a decrease
in surface pressure| Gonzdlez-Labrada et al., 2006, 2007], disappearance of the vibrational sum
frequency generation signal [Voss et al., 2006, 2007], or neutron reflection[King et al., 2009].
From these studies, it appears that the oxidation products leave the gas-particle interface soon
after oxidation. Nonanoic acid, 9-oxononanoic acid, and azelaic acid are more soluble in water
than oleic acid, and they may partition into the aqueous solution after they are formed. However,
there is evidence that azelaic acid[Tuckermann, 2007; Tuckermann and Cammenga, 2004] and
nonanoic acid[Caetano et al., 2007; Gilman et al., 2004; King et al., 2009] are surface-active and
CCN active[Broekhuizen et al., 2004a).McNeill et al.[2007]observed that nonanoic acid in wet
NaCl aerosols, in the absence of other oleic acid oxidation products, was volatile at room
temperature.Nonanal has been reported to enter the gas phase after it is formed[Katrib et al.,
2004; Moise and Rudich, 2002; Thornberry and Abbatt, 2004; Voss et al., 2006; Wadia et al.,
2000].Hung and Ariya[2007] analyzed the oxidation of mixed OA/NaCl particles using ATR-

FTIR, and showedthat before oxidation, while increasing RH, there was no increase in the water
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content of the particles, but after oxidation, there was an initial increase, then decrease in the
liquid water content. They determined that the hygroscopicity of OA/NaCl particles changed
after oxidation, but could vary and was affected by relative humidity levels. King et al.[2009]
used neutron scattering and surface pressure measurements to study the disappearance of an oleic
acid surface film on an aqueous subphase upon exposure to O;. They observed that roughly half
of the oxidation products remained at the surface, while the remainder were either released into
the gas phase or incorporated into the bulk. Consistent with our observations that CCN activity
was not enhanced compared to the pure salt for the particles generated using 0.001 M S0O/0.05 M
NaCl or 0.001 M SO/0.06 M Na,SO4 atomizer solutions,they calculated, using Kohler theory,
that one monolayer of oleic acid on a 100 nm radius particle would not depress surface tension
during cloud droplet formation enough to affect the critical supersaturation point of the droplet.
Based on the assumption that the oleic acid oxidation would be complete and would lead to a
surface film of nonanoic acid, with azelaic acid dissolving into the bulk phase, they predicted
that the oxidation of an oleic acid surface film on an aerosol particle would decrease the critical
supersaturation required for droplet formation, increasing CCN activity. Surface-bulk
partitioning was not taken into account in that calculation[Kokkola et al., 2006; Sorjamaa et al.,

2004; Sorjamaa and Laaksonen, 2006].

Our KTA calculations show support for a smallincrease in particle surface tension upon
oxidation. Such an increase in surface tension could occur with the disappearance of a surfactant
film at the interface. However,our observation that the mixed inorganic/organic particles become
more organic-like in their CCN activity after oxidation is not inconsistent with the oxidation

products remaining at the interface.The high salt content of the particles prior to activation and
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the acidic conditions would decrease the solubility of the oxidation products in these aerosols as
compared to the bulk films studied by other groups, possibly leading to phase separation. If
oxidation of an oleate surface layer is complete, it would result in the doubling of the number of
organic molecules present at the interface. In the absence of external pressure, oleate forms
expanded-state monolayers on aqueous surfaces, that is, the surface layer formed by the
hydrophobic tail groups is not well-ordered[Rideal, 1925; Schofield and Rideal, 1926].
Immediately after forming, the oxidation products exist in a disordered double layer until they
dissolve into the bulk or are released into the gas phase, or sufficient water is taken up by the
particle to dissolve them. Transport to and self-assembly of surfactant products at the interface
may be slow after oxidation, occurring on timescales much longer than the residence time in our
experimental system[Lass et al., 2010; Mcintire et al., 2010]. The work of Mcintire et
al.[2010]Jon the ozonolysis of alkene self-assembled monolayers (SAMs) with internal double
bonds provides support for the formation of a complex, low-hygroscopicity organic surface layer
upon ozonolysis. They reported that ozonolysis did not increase the hygroscopicity of surface-
bound alkenes, and it was hypothesized that the polar head groups of the oxidation products were
buried in a mixed organic layer after oxidation rather than at the air-organic interface. They
concluded that the three-dimensional structure of particles was critical for predicting aerosol

hygroscopicity and CCN activity.

For internal mixtures, k can be described by a weighted linear sum of the components in the
system [Petters and Kreidenweis, 2007]. « of azelaic acid was found to be ~0.1, while « of the
other oxidation products is unknown. If we assume that k for all oxidation products is 0.1 and

use the weighted sum approach, we find that the theoretical k values after oxidation from 0.001
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M S0O/0.05 M NaCl and 0.001 M SO/0.06 M Na,SOgare 1.23 and 0.83, respectively.Possible
sources of error include the assumption of one k value for the four main oxidation products. The
small difference between these theoretical k valuesand our observations (k= 1.19 and 0.71,

respectively) suggests that these particles can be accurately described as internally well-mixed.

Since most of the expected oleateozonolysis products are organic acids, a change in aerosol pH is
possible upon oxidation in the unacidified particles. Due to the possible formation of sodium
salts as well as organic acids, this maximum pH change assumes that only the three soluble
organic acid oleate oxidation products are formed and dissolve in the aqueous phase.Using the
pKa of each acid (azelaic acid (pKa=4.55), nonanoic acid (4.95), 9-oxononanoic acid (assumed
to be 4.95)), we can estimate the concentration of [H'] in our system after oxidation. The
calculation methodology is shown in the supplementary material. Assuming pH = 8 initiallyand
using product yields fromVesna et al.[2009], after complete oxidation of an aerosol with in-
particle oleate concentration of 0.176 M[McNeill et al., 2007], the particles would have [H'] =
1.38mM, resulting in a final pH of ~3. This pH change is expected to be less in the SO/Na,SO4
system due to buffering by SO4~2, and negligible in the acidified particles. Fatty acid solubility
increases with increasing pH (basic conditions), complementing our observation that CCN
activity decreases upon oxidation for acidifiedparticles but shows little change for unacidified
particles. This highlights the importance of using atmospherically relevant pH in laboratory
studies involving fatty acid surface-bulk partitioning in aerosols.The activated droplet diameters
of the studied systems did not change after oxidation; this suggests that if there are any kinetic
barriers to hygroscopic growth in these systems, they may be due to the finite dissolution

timescale and not a water uptake barrier from the action of the organic surface layer.
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5. Conclusions

We examined the effect of ozone oxidation on the CCN activity of aerosol particles containing
mixtures of sodium oleate (SO)/oleic acid (OA) with inorganic salts (NaCl or Na,SOy4).Exposure
to Osled to decreased CCN activity for particles at atmospherically relevant pH. Wet (activation)
diameters of these particles were not significantly different frominorganic calibration standards,
suggesting that the activation kinetics are not affected by organic surface films. KTA indicatesa
slight increase in particle surface tension uponoxidation, consistent with breakup of the organic
film after oxidation.The k values were calculated here for a reaction timescale of up to 3 minutes,
and might not accurately represent the real water uptake properties of an aged atmospheric
particle.We find that oxidative aging of mixed inorganic-organic aerosols may negatively affect

their hygroscopicity and CCN ability.
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Figure Captions

Figure 1.Experimental setup. The solutions were atomized, and combined with humidified Ny;
this flow entered the flow tube reactor simultaneously with Oz in an N, stream. The reactor
effluent passed through a drier before being characterized with a Differential Mobility Analyzer
(DMA), Condensation Particle Counter (CPC) and a Continuous Flow Streamwise Thermal
Gradient CCN Chamber (CFSTGC).

Figure 2.CCN activity of SO/NaCl particles. Particles generated from solutions containing 0.001
M or 0.01 M SO mixed with 0.05 M NaCl were exposed to O3 concentrations ranging between
0.2-1ppm in an aerosol flow tube reactor. Instrument supersaturation is shown as a function of
A) critical dry diameter and B) activated wet diameter. In both plots, the red dots represent the
salt calibration, and the red lines are guides to the eye. In panel A) an inset focuses on higher
supersaturations. In panel B) the gray lines indicate the standard deviation in the salt calibration.

Figure 3.CCN activity of SO/Na,SO, particles. Particles generated from solutions containing
0.001 M or 0.01 M SO mixed with 0.06 M Na,SO4, were oxidized with 1 ppm Oj; in an aerosol
flow tube reactor. Instrument supersaturation is shown as a function of A) critical dry diameter
and B) activated wet diameter. In both plots, the red dots represent the salt calibration, and the
red lines are guides to the eye. In panel A) an inset focuses on higher supersaturations. In panel
B) the gray lines indicate the standard deviation in the salt calibration.

Figure 4. CCN activity of SO/NaCl particles exposed to H,SO4. Particles generated from
solutions containing 0.001 M or 0.01 M SO mixed with 0.05 M NaCl were oxidized with 1 ppm
Os in a flow tube reactor. Instrument supersaturation is shown as a function of A) critical dry
diameter and B) activated wet diameter. In both plots, the red dots represent the salt calibration,
and the red lines are guides to the eye. In panel A) an inset focuses on higher supersaturations. In
panel B) the gray lines indicate the standard deviation in the salt calibration.

Figure 5. CCN activity of SO/Na,SOy particles exposed to H,SO,. Particles generated from
solutions containing 0.001 M or 0.01 M SO mixed with 0.06 M Na,SO4 were oxidized with 1
ppm Os in a flow tube reactor. Instrument supersaturation is shown as a function of A) critical
dry diameter and B) activated wet diameter. In both plots, the red dots represent the salt
calibration, and the red lines are guides to the eye. In panel A) an inset focuses on higher
supersaturations. In panel B) the gray lines indicate the standard deviation in the salt calibration.

Tables

Table 1. KTA Parameters used before and after oxidation, based on in-particle concentrations of
0.176 or 1.76 M oleate and either 8.6 M NaCl or 10.6 M Na,SO; .
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0.176 M 1.76 M

KTA Before After Before After
Parameters Oxidation Oxidation Oxidation Oxidation
(0.2-1ppm) (1ppm)

NacCl N212804 NacCl Nast4 NaCl Nast4 NacCl N212804

£, 0.19 0.09 0.12 0.05 0.71 0.50 0.57 0.35
M,(g/mol) 282.46 169.93 282.46 169.93
po(g/m’) 8.95x10° 9.94x10° 8.95x10° 9.94x10°

U, 2 2 2 2

819

820  Table 2.Inferred surface tension for unacidified aerosols from eqns. (3-5), assuming in-particle
821  concentrations of 0.176 or 1.76 Moleate in either 8.6 M NaCl or 10.6 M Na,SOs,.
822

o (mN/m) [0.176 M] 6 (mN/m) [1.76 M]
Before After After Before After After
Oxidation Oxidation Oxidation Oxidation Oxidation Oxidation
(Ippm)  (0.2ppm) (Ippm)  (0.2ppm)
NaCl 68.1 70.5 71.7 57.5 64.4 68.6
Na,SO, 73.9 74.8 - 63.7 69.9 -

823

824  Table 3.Inferred surface tension for acidified aerosols from eqns. (3-5), assuming in-particle
825  concentrations of 0.176 or 1.76 M oleate in either 8.6 M NaCl or 10.6 M Na,SOs.

826

o (mN/m) [0.176 M] o (mN/m) [1.76 M]
Before After Oxidation Before After Oxidation
Oxidation (1ppm) Oxidation (1ppm)
NaCl 69.1 72.9 55.5 67.4
Na,SO4 72.4 74.8 66.1 74.8
827
828
829
830
831
832
833  Figures
834
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Figure 1.Experimental setup. The solutions were atomized, and combined with humidified N»;
this flow entered the flow tube reactor simultaneously with Oz in an N, stream. The reactor
effluent passed through a drier before being characterized with a Differential Mobility Analyzer
(DMA), Condensation Particle Counter (CPC) and a Continuous Flow Streamwise Thermal
Gradient CCN Chamber (CFSTGC).
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Figure 2.CCN activity of SO/NaCl particles. Particles generated from solutions containing 0.001
M or 0.01 M SO mixed with 0.05 M NaCl were exposed to Oz concentrations ranging between
0.2-1ppm in an aerosol flow tube reactor. Instrument supersaturation is shown as a function of
A) critical dry diameter and B) activated wet diameter. In both plots, the red dots represent the
salt calibration, and the red lines are guides to the eye. In panel A) an inset focuses on higher
supersaturations. In panel B) the gray lines indicate the standard deviation in the salt calibration.
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Figure 3.CCN activity of SO/Na,SO, particles. Particles generated from solutions containing
0.001 M or 0.01 M SO mixed with 0.06 M Na,SO4, were oxidized with 1 ppm Oj; in an aerosol
flow tube reactor. Instrument supersaturation is shown as a function of A) critical dry diameter
and B) activated wet diameter. In both plots, the red dots represent the salt calibration, and the
red lines are guides to the eye. In panel A) an inset focuses on higher supersaturations. In panel
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B) the gray lines indicate the standard deviation in the salt calibration.
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Figure 4. CCN activity of SO/NaCl particles exposed to H,SO,. Particles generated from
solutions containing 0.001 M or 0.01 M SO mixed with 0.05 M NaCl were oxidized with 1 ppm
O; in a flow tube reactor. Instrument supersaturation is shown as a function of A) critical dry
diameter and B) activated wet diameter. In both plots, the red dots represent the salt calibration,
and the red lines are guides to the eye.In panel A) an inset focuses on higher supersaturations. In
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panel B) the gray lines indicate the standard deviation in the salt calibration.
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Figure 5. CCN activity of SO/Na,SOy4 particles exposed to H,SO,. Particles generated from
solutions containing 0.001 M or 0.01 M SO mixed with 0.06 M Na,SO,, were oxidized with 1
ppm O3 in an aerosol flow tube reactor. Instrument supersaturation is shown as a function of A)
critical dry diameter and B) activated wet diameter. In both plots, the red dots represent the salt
calibration, and the red lines are guides to the eye. In panel A) an inset focuses on higher
supersaturations. In panel B) the gray lines indicate the standard deviation in the salt calibration.
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