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Table S1. Evaluation of CMAQ-simulated concentrations of PM2.5 species by comparison with the AQS observational data from August 10 to September 14 in 2006.

	PM Species
	Number of comparison
pairs
	Mean of concentration
(μg m-3)
	Mean Bias
(μg m-3)
	Normalized 
Mean 
Bias (%)
	Mean Error
(μg m-3)
	Normalized
Mean 
Error (%)
	Mean 
Fractional 
Bias (%)
	Mean 
Fractional 
Error (%)

	PM25_daily
	106
	15
	-2.5
	-17
	7.0
	47
	-30
	54

	SO4_daily
	15
	5.5
	-2.5
	-46
	2.6
	48
	-65
	66

	NO3_daily
	11
	0.5
	-0.4
	-68
	0.43
	79
	-122
	132

	NH4_daily
	15
	2.4
	-1.2
	-53
	1.3
	53
	-59
	60

	EC_daily
	16
	0.5
	0.3
	63
	0.33
	66
	47
	51

	OC_daily
	16
	3.2
	-1.1
	-35
	1.6
	50
	-25
	54

	PM25_hourly
	10710
	14.2
	-3.6
	-25
	8.1
	57
	-40
	69
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Figure S1. Three nested CMAQ modeling domains including a mother domain with a 36-km horizontal resolution covering the entire continental U.S. and portions of Canada and Mexico, a middle domain with a 12-km horizontal resolution covering eastern Texas and the surrounding states of Oklahoma, Arkansas, and Louisiana, and a inner-most domain with a 4-km grid resolution covering southeastern Texas. The HGB area is highlighted as red.
[image: figure3_5]
Figure S2. Five AQS monitoring sites selected for comparison with PM2.5 simulation. The map is obtained from TCEQ's online map plotting tool Geographical Texas Air Monitoring (GeoTAM, available at http://tceq4apmgwebp1.tceq.texas.gov:8080/geotam/).



Evaluation of RFM and DDM Sensitivities

The RFM is evaluated by comparing the PM2.5 concentration simulated by the RFM and the original CMAQ model at 10%, 50%, and 100% reduction in SO2, NOx, NH3, and VOC emissions (Figure S3).  The field plotted in Figure S3 is daily average PM2.5 concentrations at the five monitors used in Figure 5 in the main text.  Both the slope of the linear regression and R2 is close to one, indicating an excellent agreement between the RFM and the original CMAQ.

First-order DDM sensitivities are evaluated by comparing to brute force (BF) sensitivities calculated using the following methods:
1. Forward finite difference (FD) (Eq. S1) with 50% perturbation in emissions,
 (S1)
2. Central FD (Eq. S2) with 50% perturbation in emissions,
 (S2)
3. Backward FD (Eq. S3) with 50% perturbation in emissions, and
 (S3)
4. Central FD (Eq. S2) with 10% perturbation in emissions.

Figure S4 shows the comparison of daily averaged first-order sensitivities to SO2, NOx, NH3, and VOC at the five monitors calculated by CMAQ-HDDM and the above four BF methods.  Inconsistency was found for BF sensitivities, so cautions should be taken when evaluating the DDM sensitivities with the BF ones.  First-order BF sensitivities calculated by forward, backward, and central FD show inconsistency for ,  , and.  DDM sensitivities turn out to be consistent with one or two of the BF sensitivities.  For example,  calculated by DDM is closer to the value calculated by backward FD;  calculated by DDM is closer to the value calculated by forward BF.  The perturbation size appears not impact the BF first-order sensitivity to a large extent except BF sensitivity of PM2.5 to VOC.  Changing the perturbation size from 50% to 10% ended up a six time difference of the BF sensitivities calculated by central FD.

Second-order DDM sensitivities of PM2.5 to SO2, NOx, NH3, and VOC at the five monitors are also compared to BF values.  However, second-order BF sensitivities are even noisy.  Central FD of second-order sensitivities (Eq. S4) with emission perturbation of 10% and 50% are compared in Figure S5, and no consistency can be found between the two BF sensitivities.  This shows the highly noisy behavior of BF method to approximate the high-order sensitivity, and also it is unknown which BF sensitivity is closer to the true value.  Thus, the comparison of second-order DDM sensitivities with BF sensitivities seems not a good way to evaluate CMAQ DDM sensitivities.  However, given the good performance of DDM in predicting second-order sensitivities in the stand-alone ISORROPIA (which has less noise in BF second-order sensitivities than CMAQ) (Zhang et al., 2012), and that the good performance of RFM shown in Figure S3, DDM is more likely to provide reliable second-order sensitivities than BF.  

 (S4)

The first-order sensitivities of PM2.5 to SO2 calculated by the RFM and the original CMAQ model were also compared using the following emission changes:
a) +50% NOx, +50% NH3
b) +50% NOx, -50% NH3
c)  -50% NOx,  -50% NH3
d)  -50% NOx, +50% NH3
[bookmark: _GoBack]Figure S6 shows excellent agreement between the RFM and original CMAQ and demonstrated the ability of the RFM to replicate the original model with multiple simultaneous large emission changes.
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Figure S3. Comparison of PM2.5 concentrations simulated by the original CMAQ and the RFM with 10%, 50%, and 100% reduction in SO2, NOx, NH3, and VOC emissions. The upper, middle and lower grey lines represent 2:1, and 1:1, and 1:2 lines.  The red line represents the linear regression of the RFM output against CMAQ simulation. 
[image: D:\work\paper_writing\uncertainty_paper\review1\plots_response\Figure R3_1.png]
Figure S4. Comparison of First-Order DDM sensitivities (purple cross) with BF sensitivities calculated using central finite difference (FD) with 50% perturbation (used as x-axis), forward FD with 50% perturbation (blue diamond), backward FD with 50% perturbation (red square), and central FD with 10% perturbation (green triangle). The four sensitivities plotted in this figure are a) , b) , c) , d).  


[image: D:\work\paper_writing\uncertainty_paper\review1\plots_response\Figure R3_3.png]
Figure S5. Comparison of Second-Order DDM sensitivities (blue diamond) with BF sensitivities calculated using central finite difference (FD) with 50% (used as x-axis) and 10% (red cross) perturbation. The four sensitivities plotted in this figure are a) , b) , c) , d) .  



[image: D:\work\paper_writing\uncertainty_paper\review1\Figure R4.png]
Figure S6. Comparison of  calculated by the RFM with the original CMAQ model with emission changes of a) +50% NOx and +50% NH3, b) +50% NOx and -50% NH3, b) -50% NOx and -50% NH3, b) -50% NOx and +50% NH3.  The grey lines are the 1:2 and 2:1 lines.  The black dotted line is the 1:1 line. The red line represents the linear regression of the RFM output against CMAQ simulations.  

image4.png
;A
L S ——

' [

aBFcenyal 10%

b)

<oom

t-Order Sensitivil

Fil

-15 0.5 05 5 15 1 05 0 05 1

ity Calculated by Central Finite Difference with 50% Emission Perturbation (ug m)




image5.png
ity (ngm3)

Second-Order Sensif

4 — 5
a)  eoom b) X
< BF10% .
2 g : <%
B %
1 X
N %
£3 MR e
a|* 2 s 4
x !
2 X
3 :
4 s
4 2 0 2 4 8 6 4 2 o0 2
s 120
C
) x 100
3
80
1 60
4 40
20
3
o
5 - 20
2 o 2 0 s 10 15

ity with 50% Emission Perturbation (pug m)




image6.png
33x-008
0.5

£
2
=
=
>
3
T
2
5
]
3
=
3
o)
32
s
=
s
s
z
s
@
2
5
3
5
2
Q
4

i s
s s
[ d
) ) v=090x+0.06 |
4 4 ©-096 "/
17%-002
% -095 /_'(
3 3 /1
2
pZ
2 2 o
nle
1l . 1 e
3 3
o 1 2 3 4 s 0o 1 2 3 a4 s

First-Order Sensitivity of PM, 5 to SO, Calculated by Original CMAQ (kg m)




image1.png




image2.png
/“ RS OR e

Forter

\kmcoon. i $

HUMBLE
GeorgdBush Intentl
6 LCypress f % Housgln Aewort Y > s

West Houston
Airport

Barker

%’ Ellington
Fid

4820104160c514n0 ® “sexeok

gk b 4 \ st mah
£ FRIENDSWOOD i

~ L%iz’émr Baciiff
TR
\l\ NSON





image3.png
PM, s Concentration Simulated by RFM {ug m=)

10

a a0 -
oo yeosmcsom o v-osecross
R?=1.00 R =100 R =099
s e
0 0
< e
S <
0 0
10 10
-10% SO, -50% SO, -100% SO,
o o
o ®  ®» w0 0 @ % w o 0 »
© ©
'y =1.00x+0.01, v:OB?xH).DYJ/ y=0.99x+0.20
R*=1.00 Rlzlvw/ R*=1.00
s
30 y/ 30
0 0
10 10
-10% NO, -50% NO,
0 o
0 o % w0, o »  m o o PR
40 /A e S
y =1.00x+0.01, y=1.04x+0.19 //
R*=1.00 R?=1.00 /’
30 EY »0
y
&
0 / 0 /
10 10
-10% NH; - 50% NH, -100% NH,
o o
o % w o 0 % w0 » % w
© ©
7 7% 7
v-099-0.17, v=087x-008 y=0o7m+015
f W W
% 0
// 30 S 0 &
&
2 v -~
» » /
10 10
-10% VOC - 50% VOC -100% VOC
o o
10 20 30 40 o 10 20 30 40 o 20 30 40

PM, 5 Concentration Simulated by CMAQ (pg m3)




